Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve the given expression step-by-step and verify the result:
Given expression:
[tex]\[ \frac{\cot^3 B - \tan^3 B}{\cot B - \tan B} \][/tex]
1. Factor the numerator:
The numerator is in the form of a difference of cubes, which can be factored using the identity:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
Let [tex]\( a = \cot B \)[/tex] and [tex]\( b = \tan B \)[/tex], then:
[tex]\[ \cot^3 B - \tan^3 B = (\cot B - \tan B)(\cot^2 B + \cot B \tan B + \tan^2 B) \][/tex]
2. Substitute back into the expression:
Substitute the factor form back into the expression:
[tex]\[ \frac{(\cot B - \tan B)(\cot^2 B + \cot B \tan B + \tan^2 B)}{\cot B - \tan B} \][/tex]
Since [tex]\(\cot B - \tan B\)[/tex] appears in both the numerator and the denominator, it gets cancelled:
[tex]\[ \cot^2 B + \cot B \tan B + \tan^2 B \][/tex]
3. Simplify the resulting expression:
To simplify [tex]\( \cot^2 B + \cot B \tan B + \tan^2 B \)[/tex]:
- We know that [tex]\(\cot B = \frac{1}{\tan B}\)[/tex].
- Therefore, [tex]\(\cot B \tan B = \frac{1}{\tan B} \cdot \tan B = 1\)[/tex].
The expression simplifies to:
[tex]\[ \cot^2 B + 1 + \tan^2 B \][/tex]
4. Use trigonometric identities:
Recall the trigonometric identities:
[tex]\[ \cot^2 B = \csc^2 B - 1 \][/tex]
[tex]\[ \tan^2 B = \sec^2 B - 1 \][/tex]
Substitute these identities into the simplified expression:
[tex]\[ (\csc^2 B - 1) + 1 + (\sec^2 B - 1) \][/tex]
Simplify by combining like terms:
[tex]\[ \csc^2 B - 1 + 1 + \sec^2 B - 1 \][/tex]
[tex]\[ \csc^2 B + \sec^2 B - 1 \][/tex]
Thus, the given expression simplifies to:
[tex]\[ \sec^2 B + \csc^2 B - 1 \][/tex]
Therefore, the original equation holds:
[tex]\[ \frac{\cot^3 B - \tan^3 B}{\cot B - \tan B} = \sec^2 B + \csc^2 B - 1 \][/tex]
Given expression:
[tex]\[ \frac{\cot^3 B - \tan^3 B}{\cot B - \tan B} \][/tex]
1. Factor the numerator:
The numerator is in the form of a difference of cubes, which can be factored using the identity:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
Let [tex]\( a = \cot B \)[/tex] and [tex]\( b = \tan B \)[/tex], then:
[tex]\[ \cot^3 B - \tan^3 B = (\cot B - \tan B)(\cot^2 B + \cot B \tan B + \tan^2 B) \][/tex]
2. Substitute back into the expression:
Substitute the factor form back into the expression:
[tex]\[ \frac{(\cot B - \tan B)(\cot^2 B + \cot B \tan B + \tan^2 B)}{\cot B - \tan B} \][/tex]
Since [tex]\(\cot B - \tan B\)[/tex] appears in both the numerator and the denominator, it gets cancelled:
[tex]\[ \cot^2 B + \cot B \tan B + \tan^2 B \][/tex]
3. Simplify the resulting expression:
To simplify [tex]\( \cot^2 B + \cot B \tan B + \tan^2 B \)[/tex]:
- We know that [tex]\(\cot B = \frac{1}{\tan B}\)[/tex].
- Therefore, [tex]\(\cot B \tan B = \frac{1}{\tan B} \cdot \tan B = 1\)[/tex].
The expression simplifies to:
[tex]\[ \cot^2 B + 1 + \tan^2 B \][/tex]
4. Use trigonometric identities:
Recall the trigonometric identities:
[tex]\[ \cot^2 B = \csc^2 B - 1 \][/tex]
[tex]\[ \tan^2 B = \sec^2 B - 1 \][/tex]
Substitute these identities into the simplified expression:
[tex]\[ (\csc^2 B - 1) + 1 + (\sec^2 B - 1) \][/tex]
Simplify by combining like terms:
[tex]\[ \csc^2 B - 1 + 1 + \sec^2 B - 1 \][/tex]
[tex]\[ \csc^2 B + \sec^2 B - 1 \][/tex]
Thus, the given expression simplifies to:
[tex]\[ \sec^2 B + \csc^2 B - 1 \][/tex]
Therefore, the original equation holds:
[tex]\[ \frac{\cot^3 B - \tan^3 B}{\cot B - \tan B} = \sec^2 B + \csc^2 B - 1 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.