Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the linear programming problem of maximizing [tex]\( P = 30x + 40y \)[/tex] subject to the given constraints, we can follow a series of logical steps to find the optimal solution.
### Step 1: Define the Constraints
The problem is subject to the following constraints:
[tex]\[ \begin{aligned} (1) \quad 2x + y & \leq 12, \\ (2) \quad x + y & \leq 8, \\ (3) \quad x + 2y & \leq 14, \\ (4) \quad x & \geq 0, \\ (5) \quad y & \geq 0. \end{aligned} \][/tex]
### Step 2: Graph the Feasible Region
Plotting these constraints on a graph will help us visualize the feasible region.
- For [tex]\(2x + y \leq 12\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 12\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 6\)[/tex]
- For [tex]\(x + y \leq 8\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 8\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 8\)[/tex]
- For [tex]\(x + 2y \leq 14\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 7\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 14\)[/tex]
These lines intersect the axes at the points mentioned.
### Step 3: Find Intersection Points
The intersections of these lines with each other and the axes provide us with the vertices of the feasible region. Let's determine these points.
- Intersection of [tex]\(2x + y = 12\)[/tex] and [tex]\(x + y = 8\)[/tex]:
[tex]\[ \begin{aligned} 2x + y &= 12, \\ x + y &= 8. \end{aligned} \][/tex]
Subtract the second equation from the first:
[tex]\[ (2x + y) - (x + y) = 12 - 8 \implies x = 4. \][/tex]
Substitute [tex]\(x = 4\)[/tex] in [tex]\(x + y = 8\)[/tex]:
[tex]\[ 4 + y = 8 \implies y = 4. \][/tex]
This gives the point [tex]\((4, 4)\)[/tex].
- Intersection of [tex]\(x + y = 8\)[/tex] and [tex]\(x + 2y = 14\)[/tex]:
[tex]\[ \begin{aligned} x + y &= 8, \\ x + 2y &= 14. \end{aligned} \][/tex]
Subtract the first equation from the second:
[tex]\[ (x + 2y) - (x + y) = 14 - 8 \implies y = 6. \][/tex]
Substitute [tex]\(y = 6\)[/tex] in [tex]\(x + y = 8\)[/tex]:
[tex]\[ x + 6 = 8 \implies x = 2. \][/tex]
This gives the point [tex]\((2, 6)\)[/tex].
- Other boundary points come from where the constraints intersect the axes, such as [tex]\((0,0)\)[/tex], [tex]\((0, 7)\)[/tex], and [tex]\((6, 0)\)[/tex].
### Step 4: Evaluate the Objective Function
Evaluate the objective function [tex]\(P = 30x + 40y\)[/tex] at these vertices:
- At [tex]\((0,0)\)[/tex]:
[tex]\[ P = 30 \times 0 + 40 \times 0 = 0 \][/tex]
- At [tex]\((4,4)\)[/tex]:
[tex]\[ P = 30 \times 4 + 40 \times 4 = 120 + 160 = 280 \][/tex]
- At [tex]\((2,6)\)[/tex]:
[tex]\[ P = 30 \times 2 + 40 \times 6 = 60 + 240 = 300 \][/tex]
- At [tex]\((0,7)\)[/tex]:
[tex]\[ P = 30 \times 0 + 40 \times 7 = 280 \][/tex]
- At [tex]\((6,0)\)[/tex]:
[tex]\[ P = 30 \times 6 + 40 \times 0 = 180 \][/tex]
### Step 5: Select the Optimal Solution
The maximum value of [tex]\(P\)[/tex] from the evaluated points is [tex]\(300\)[/tex], which occurs at the point [tex]\((2,6)\)[/tex].
### Conclusion
The optimal solution is:
[tex]\[ x = 2, y = 6 \][/tex]
[tex]\[ \text{Maximum value of } P = 300 \][/tex]
Thus, the maximum value of the objective function [tex]\(P\)[/tex] under the given constraints is [tex]\(300\)[/tex], achieved at the point [tex]\((2,6)\)[/tex].
### Step 1: Define the Constraints
The problem is subject to the following constraints:
[tex]\[ \begin{aligned} (1) \quad 2x + y & \leq 12, \\ (2) \quad x + y & \leq 8, \\ (3) \quad x + 2y & \leq 14, \\ (4) \quad x & \geq 0, \\ (5) \quad y & \geq 0. \end{aligned} \][/tex]
### Step 2: Graph the Feasible Region
Plotting these constraints on a graph will help us visualize the feasible region.
- For [tex]\(2x + y \leq 12\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 12\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 6\)[/tex]
- For [tex]\(x + y \leq 8\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 8\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 8\)[/tex]
- For [tex]\(x + 2y \leq 14\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 7\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 14\)[/tex]
These lines intersect the axes at the points mentioned.
### Step 3: Find Intersection Points
The intersections of these lines with each other and the axes provide us with the vertices of the feasible region. Let's determine these points.
- Intersection of [tex]\(2x + y = 12\)[/tex] and [tex]\(x + y = 8\)[/tex]:
[tex]\[ \begin{aligned} 2x + y &= 12, \\ x + y &= 8. \end{aligned} \][/tex]
Subtract the second equation from the first:
[tex]\[ (2x + y) - (x + y) = 12 - 8 \implies x = 4. \][/tex]
Substitute [tex]\(x = 4\)[/tex] in [tex]\(x + y = 8\)[/tex]:
[tex]\[ 4 + y = 8 \implies y = 4. \][/tex]
This gives the point [tex]\((4, 4)\)[/tex].
- Intersection of [tex]\(x + y = 8\)[/tex] and [tex]\(x + 2y = 14\)[/tex]:
[tex]\[ \begin{aligned} x + y &= 8, \\ x + 2y &= 14. \end{aligned} \][/tex]
Subtract the first equation from the second:
[tex]\[ (x + 2y) - (x + y) = 14 - 8 \implies y = 6. \][/tex]
Substitute [tex]\(y = 6\)[/tex] in [tex]\(x + y = 8\)[/tex]:
[tex]\[ x + 6 = 8 \implies x = 2. \][/tex]
This gives the point [tex]\((2, 6)\)[/tex].
- Other boundary points come from where the constraints intersect the axes, such as [tex]\((0,0)\)[/tex], [tex]\((0, 7)\)[/tex], and [tex]\((6, 0)\)[/tex].
### Step 4: Evaluate the Objective Function
Evaluate the objective function [tex]\(P = 30x + 40y\)[/tex] at these vertices:
- At [tex]\((0,0)\)[/tex]:
[tex]\[ P = 30 \times 0 + 40 \times 0 = 0 \][/tex]
- At [tex]\((4,4)\)[/tex]:
[tex]\[ P = 30 \times 4 + 40 \times 4 = 120 + 160 = 280 \][/tex]
- At [tex]\((2,6)\)[/tex]:
[tex]\[ P = 30 \times 2 + 40 \times 6 = 60 + 240 = 300 \][/tex]
- At [tex]\((0,7)\)[/tex]:
[tex]\[ P = 30 \times 0 + 40 \times 7 = 280 \][/tex]
- At [tex]\((6,0)\)[/tex]:
[tex]\[ P = 30 \times 6 + 40 \times 0 = 180 \][/tex]
### Step 5: Select the Optimal Solution
The maximum value of [tex]\(P\)[/tex] from the evaluated points is [tex]\(300\)[/tex], which occurs at the point [tex]\((2,6)\)[/tex].
### Conclusion
The optimal solution is:
[tex]\[ x = 2, y = 6 \][/tex]
[tex]\[ \text{Maximum value of } P = 300 \][/tex]
Thus, the maximum value of the objective function [tex]\(P\)[/tex] under the given constraints is [tex]\(300\)[/tex], achieved at the point [tex]\((2,6)\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.