Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the linear programming problem of maximizing [tex]\( P = 30x + 40y \)[/tex] subject to the given constraints, we can follow a series of logical steps to find the optimal solution.
### Step 1: Define the Constraints
The problem is subject to the following constraints:
[tex]\[ \begin{aligned} (1) \quad 2x + y & \leq 12, \\ (2) \quad x + y & \leq 8, \\ (3) \quad x + 2y & \leq 14, \\ (4) \quad x & \geq 0, \\ (5) \quad y & \geq 0. \end{aligned} \][/tex]
### Step 2: Graph the Feasible Region
Plotting these constraints on a graph will help us visualize the feasible region.
- For [tex]\(2x + y \leq 12\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 12\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 6\)[/tex]
- For [tex]\(x + y \leq 8\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 8\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 8\)[/tex]
- For [tex]\(x + 2y \leq 14\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 7\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 14\)[/tex]
These lines intersect the axes at the points mentioned.
### Step 3: Find Intersection Points
The intersections of these lines with each other and the axes provide us with the vertices of the feasible region. Let's determine these points.
- Intersection of [tex]\(2x + y = 12\)[/tex] and [tex]\(x + y = 8\)[/tex]:
[tex]\[ \begin{aligned} 2x + y &= 12, \\ x + y &= 8. \end{aligned} \][/tex]
Subtract the second equation from the first:
[tex]\[ (2x + y) - (x + y) = 12 - 8 \implies x = 4. \][/tex]
Substitute [tex]\(x = 4\)[/tex] in [tex]\(x + y = 8\)[/tex]:
[tex]\[ 4 + y = 8 \implies y = 4. \][/tex]
This gives the point [tex]\((4, 4)\)[/tex].
- Intersection of [tex]\(x + y = 8\)[/tex] and [tex]\(x + 2y = 14\)[/tex]:
[tex]\[ \begin{aligned} x + y &= 8, \\ x + 2y &= 14. \end{aligned} \][/tex]
Subtract the first equation from the second:
[tex]\[ (x + 2y) - (x + y) = 14 - 8 \implies y = 6. \][/tex]
Substitute [tex]\(y = 6\)[/tex] in [tex]\(x + y = 8\)[/tex]:
[tex]\[ x + 6 = 8 \implies x = 2. \][/tex]
This gives the point [tex]\((2, 6)\)[/tex].
- Other boundary points come from where the constraints intersect the axes, such as [tex]\((0,0)\)[/tex], [tex]\((0, 7)\)[/tex], and [tex]\((6, 0)\)[/tex].
### Step 4: Evaluate the Objective Function
Evaluate the objective function [tex]\(P = 30x + 40y\)[/tex] at these vertices:
- At [tex]\((0,0)\)[/tex]:
[tex]\[ P = 30 \times 0 + 40 \times 0 = 0 \][/tex]
- At [tex]\((4,4)\)[/tex]:
[tex]\[ P = 30 \times 4 + 40 \times 4 = 120 + 160 = 280 \][/tex]
- At [tex]\((2,6)\)[/tex]:
[tex]\[ P = 30 \times 2 + 40 \times 6 = 60 + 240 = 300 \][/tex]
- At [tex]\((0,7)\)[/tex]:
[tex]\[ P = 30 \times 0 + 40 \times 7 = 280 \][/tex]
- At [tex]\((6,0)\)[/tex]:
[tex]\[ P = 30 \times 6 + 40 \times 0 = 180 \][/tex]
### Step 5: Select the Optimal Solution
The maximum value of [tex]\(P\)[/tex] from the evaluated points is [tex]\(300\)[/tex], which occurs at the point [tex]\((2,6)\)[/tex].
### Conclusion
The optimal solution is:
[tex]\[ x = 2, y = 6 \][/tex]
[tex]\[ \text{Maximum value of } P = 300 \][/tex]
Thus, the maximum value of the objective function [tex]\(P\)[/tex] under the given constraints is [tex]\(300\)[/tex], achieved at the point [tex]\((2,6)\)[/tex].
### Step 1: Define the Constraints
The problem is subject to the following constraints:
[tex]\[ \begin{aligned} (1) \quad 2x + y & \leq 12, \\ (2) \quad x + y & \leq 8, \\ (3) \quad x + 2y & \leq 14, \\ (4) \quad x & \geq 0, \\ (5) \quad y & \geq 0. \end{aligned} \][/tex]
### Step 2: Graph the Feasible Region
Plotting these constraints on a graph will help us visualize the feasible region.
- For [tex]\(2x + y \leq 12\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 12\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 6\)[/tex]
- For [tex]\(x + y \leq 8\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 8\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 8\)[/tex]
- For [tex]\(x + 2y \leq 14\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 7\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 14\)[/tex]
These lines intersect the axes at the points mentioned.
### Step 3: Find Intersection Points
The intersections of these lines with each other and the axes provide us with the vertices of the feasible region. Let's determine these points.
- Intersection of [tex]\(2x + y = 12\)[/tex] and [tex]\(x + y = 8\)[/tex]:
[tex]\[ \begin{aligned} 2x + y &= 12, \\ x + y &= 8. \end{aligned} \][/tex]
Subtract the second equation from the first:
[tex]\[ (2x + y) - (x + y) = 12 - 8 \implies x = 4. \][/tex]
Substitute [tex]\(x = 4\)[/tex] in [tex]\(x + y = 8\)[/tex]:
[tex]\[ 4 + y = 8 \implies y = 4. \][/tex]
This gives the point [tex]\((4, 4)\)[/tex].
- Intersection of [tex]\(x + y = 8\)[/tex] and [tex]\(x + 2y = 14\)[/tex]:
[tex]\[ \begin{aligned} x + y &= 8, \\ x + 2y &= 14. \end{aligned} \][/tex]
Subtract the first equation from the second:
[tex]\[ (x + 2y) - (x + y) = 14 - 8 \implies y = 6. \][/tex]
Substitute [tex]\(y = 6\)[/tex] in [tex]\(x + y = 8\)[/tex]:
[tex]\[ x + 6 = 8 \implies x = 2. \][/tex]
This gives the point [tex]\((2, 6)\)[/tex].
- Other boundary points come from where the constraints intersect the axes, such as [tex]\((0,0)\)[/tex], [tex]\((0, 7)\)[/tex], and [tex]\((6, 0)\)[/tex].
### Step 4: Evaluate the Objective Function
Evaluate the objective function [tex]\(P = 30x + 40y\)[/tex] at these vertices:
- At [tex]\((0,0)\)[/tex]:
[tex]\[ P = 30 \times 0 + 40 \times 0 = 0 \][/tex]
- At [tex]\((4,4)\)[/tex]:
[tex]\[ P = 30 \times 4 + 40 \times 4 = 120 + 160 = 280 \][/tex]
- At [tex]\((2,6)\)[/tex]:
[tex]\[ P = 30 \times 2 + 40 \times 6 = 60 + 240 = 300 \][/tex]
- At [tex]\((0,7)\)[/tex]:
[tex]\[ P = 30 \times 0 + 40 \times 7 = 280 \][/tex]
- At [tex]\((6,0)\)[/tex]:
[tex]\[ P = 30 \times 6 + 40 \times 0 = 180 \][/tex]
### Step 5: Select the Optimal Solution
The maximum value of [tex]\(P\)[/tex] from the evaluated points is [tex]\(300\)[/tex], which occurs at the point [tex]\((2,6)\)[/tex].
### Conclusion
The optimal solution is:
[tex]\[ x = 2, y = 6 \][/tex]
[tex]\[ \text{Maximum value of } P = 300 \][/tex]
Thus, the maximum value of the objective function [tex]\(P\)[/tex] under the given constraints is [tex]\(300\)[/tex], achieved at the point [tex]\((2,6)\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.