Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the linear programming problem of maximizing [tex]\( P = 30x + 40y \)[/tex] subject to the given constraints, we can follow a series of logical steps to find the optimal solution.
### Step 1: Define the Constraints
The problem is subject to the following constraints:
[tex]\[ \begin{aligned} (1) \quad 2x + y & \leq 12, \\ (2) \quad x + y & \leq 8, \\ (3) \quad x + 2y & \leq 14, \\ (4) \quad x & \geq 0, \\ (5) \quad y & \geq 0. \end{aligned} \][/tex]
### Step 2: Graph the Feasible Region
Plotting these constraints on a graph will help us visualize the feasible region.
- For [tex]\(2x + y \leq 12\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 12\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 6\)[/tex]
- For [tex]\(x + y \leq 8\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 8\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 8\)[/tex]
- For [tex]\(x + 2y \leq 14\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 7\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 14\)[/tex]
These lines intersect the axes at the points mentioned.
### Step 3: Find Intersection Points
The intersections of these lines with each other and the axes provide us with the vertices of the feasible region. Let's determine these points.
- Intersection of [tex]\(2x + y = 12\)[/tex] and [tex]\(x + y = 8\)[/tex]:
[tex]\[ \begin{aligned} 2x + y &= 12, \\ x + y &= 8. \end{aligned} \][/tex]
Subtract the second equation from the first:
[tex]\[ (2x + y) - (x + y) = 12 - 8 \implies x = 4. \][/tex]
Substitute [tex]\(x = 4\)[/tex] in [tex]\(x + y = 8\)[/tex]:
[tex]\[ 4 + y = 8 \implies y = 4. \][/tex]
This gives the point [tex]\((4, 4)\)[/tex].
- Intersection of [tex]\(x + y = 8\)[/tex] and [tex]\(x + 2y = 14\)[/tex]:
[tex]\[ \begin{aligned} x + y &= 8, \\ x + 2y &= 14. \end{aligned} \][/tex]
Subtract the first equation from the second:
[tex]\[ (x + 2y) - (x + y) = 14 - 8 \implies y = 6. \][/tex]
Substitute [tex]\(y = 6\)[/tex] in [tex]\(x + y = 8\)[/tex]:
[tex]\[ x + 6 = 8 \implies x = 2. \][/tex]
This gives the point [tex]\((2, 6)\)[/tex].
- Other boundary points come from where the constraints intersect the axes, such as [tex]\((0,0)\)[/tex], [tex]\((0, 7)\)[/tex], and [tex]\((6, 0)\)[/tex].
### Step 4: Evaluate the Objective Function
Evaluate the objective function [tex]\(P = 30x + 40y\)[/tex] at these vertices:
- At [tex]\((0,0)\)[/tex]:
[tex]\[ P = 30 \times 0 + 40 \times 0 = 0 \][/tex]
- At [tex]\((4,4)\)[/tex]:
[tex]\[ P = 30 \times 4 + 40 \times 4 = 120 + 160 = 280 \][/tex]
- At [tex]\((2,6)\)[/tex]:
[tex]\[ P = 30 \times 2 + 40 \times 6 = 60 + 240 = 300 \][/tex]
- At [tex]\((0,7)\)[/tex]:
[tex]\[ P = 30 \times 0 + 40 \times 7 = 280 \][/tex]
- At [tex]\((6,0)\)[/tex]:
[tex]\[ P = 30 \times 6 + 40 \times 0 = 180 \][/tex]
### Step 5: Select the Optimal Solution
The maximum value of [tex]\(P\)[/tex] from the evaluated points is [tex]\(300\)[/tex], which occurs at the point [tex]\((2,6)\)[/tex].
### Conclusion
The optimal solution is:
[tex]\[ x = 2, y = 6 \][/tex]
[tex]\[ \text{Maximum value of } P = 300 \][/tex]
Thus, the maximum value of the objective function [tex]\(P\)[/tex] under the given constraints is [tex]\(300\)[/tex], achieved at the point [tex]\((2,6)\)[/tex].
### Step 1: Define the Constraints
The problem is subject to the following constraints:
[tex]\[ \begin{aligned} (1) \quad 2x + y & \leq 12, \\ (2) \quad x + y & \leq 8, \\ (3) \quad x + 2y & \leq 14, \\ (4) \quad x & \geq 0, \\ (5) \quad y & \geq 0. \end{aligned} \][/tex]
### Step 2: Graph the Feasible Region
Plotting these constraints on a graph will help us visualize the feasible region.
- For [tex]\(2x + y \leq 12\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 12\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 6\)[/tex]
- For [tex]\(x + y \leq 8\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 8\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 8\)[/tex]
- For [tex]\(x + 2y \leq 14\)[/tex]:
- When [tex]\(x = 0\)[/tex]: [tex]\(y = 7\)[/tex]
- When [tex]\(y = 0\)[/tex]: [tex]\(x = 14\)[/tex]
These lines intersect the axes at the points mentioned.
### Step 3: Find Intersection Points
The intersections of these lines with each other and the axes provide us with the vertices of the feasible region. Let's determine these points.
- Intersection of [tex]\(2x + y = 12\)[/tex] and [tex]\(x + y = 8\)[/tex]:
[tex]\[ \begin{aligned} 2x + y &= 12, \\ x + y &= 8. \end{aligned} \][/tex]
Subtract the second equation from the first:
[tex]\[ (2x + y) - (x + y) = 12 - 8 \implies x = 4. \][/tex]
Substitute [tex]\(x = 4\)[/tex] in [tex]\(x + y = 8\)[/tex]:
[tex]\[ 4 + y = 8 \implies y = 4. \][/tex]
This gives the point [tex]\((4, 4)\)[/tex].
- Intersection of [tex]\(x + y = 8\)[/tex] and [tex]\(x + 2y = 14\)[/tex]:
[tex]\[ \begin{aligned} x + y &= 8, \\ x + 2y &= 14. \end{aligned} \][/tex]
Subtract the first equation from the second:
[tex]\[ (x + 2y) - (x + y) = 14 - 8 \implies y = 6. \][/tex]
Substitute [tex]\(y = 6\)[/tex] in [tex]\(x + y = 8\)[/tex]:
[tex]\[ x + 6 = 8 \implies x = 2. \][/tex]
This gives the point [tex]\((2, 6)\)[/tex].
- Other boundary points come from where the constraints intersect the axes, such as [tex]\((0,0)\)[/tex], [tex]\((0, 7)\)[/tex], and [tex]\((6, 0)\)[/tex].
### Step 4: Evaluate the Objective Function
Evaluate the objective function [tex]\(P = 30x + 40y\)[/tex] at these vertices:
- At [tex]\((0,0)\)[/tex]:
[tex]\[ P = 30 \times 0 + 40 \times 0 = 0 \][/tex]
- At [tex]\((4,4)\)[/tex]:
[tex]\[ P = 30 \times 4 + 40 \times 4 = 120 + 160 = 280 \][/tex]
- At [tex]\((2,6)\)[/tex]:
[tex]\[ P = 30 \times 2 + 40 \times 6 = 60 + 240 = 300 \][/tex]
- At [tex]\((0,7)\)[/tex]:
[tex]\[ P = 30 \times 0 + 40 \times 7 = 280 \][/tex]
- At [tex]\((6,0)\)[/tex]:
[tex]\[ P = 30 \times 6 + 40 \times 0 = 180 \][/tex]
### Step 5: Select the Optimal Solution
The maximum value of [tex]\(P\)[/tex] from the evaluated points is [tex]\(300\)[/tex], which occurs at the point [tex]\((2,6)\)[/tex].
### Conclusion
The optimal solution is:
[tex]\[ x = 2, y = 6 \][/tex]
[tex]\[ \text{Maximum value of } P = 300 \][/tex]
Thus, the maximum value of the objective function [tex]\(P\)[/tex] under the given constraints is [tex]\(300\)[/tex], achieved at the point [tex]\((2,6)\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.