Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's analyze each summation step-by-step to determine the one that represents the total number of pennies on the chessboard:
### Summation 1:
[tex]\[ \sum_{n=1}^{64} 1 \cdot 2^{n-1} \][/tex]
This summation is representing the idea of placing one penny on the first square of a chessboard, and then doubling the number of pennies on each subsequent square. A chessboard has 64 squares. Let's calculate the total number of pennies:
[tex]\[ \begin{align*} \text{First term: } & 1 \cdot 2^{0} = 1 \\ \text{Second term: } & 1 \cdot 2^{1} = 2 \\ \text{Third term: } & 1 \cdot 2^{2} = 4 \\ \text{Fourth term: } & 1 \cdot 2^{3} = 8 \\ &\vdots \\ \text{Last term: } & 1 \cdot 2^{63} \end{align*} \][/tex]
This summation is:
[tex]\[ 1 + 2 + 4 + \cdots + 2^{63} \][/tex]
This is a geometric series with the first term [tex]\(a = 1\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]
For [tex]\(n = 64\)[/tex]:
[tex]\[ S_{64} = 1 \cdot \frac{2^{64} - 1}{2 - 1} = 2^{64} - 1 \][/tex]
Hence, the total number of pennies on the chessboard is:
[tex]\[ 2^{64} - 1 = 18446744073709551615 \][/tex]
### Summation 2:
[tex]\[ \sum_{n=1}^{32} 2^{31} \cdot 2^{n-1} \][/tex]
Now, let's analyze the second summation. Here, [tex]\(2^{31}\)[/tex] is a constant factor multiplied by the geometric series [tex]\(2^{n-1}\)[/tex] over 32 terms.
[tex]\[ \begin{align*} \text{First term: } & 2^{31} \cdot 2^{0} = 2^{31} \\ \text{Second term: } & 2^{31} \cdot 2^{1} = 2^{32} \\ \text{Third term: } & 2^{31} \cdot 2^{2} = 2^{33} \\ \text{Fourth term: } & 2^{31} \cdot 2^{3} = 2^{34} \\ &\vdots \\ \text{Last term: } & 2^{31} \cdot 2^{31} \end{align*} \][/tex]
This sum is:
[tex]\[ 2^{31} + 2^{32} + 2^{33} + \cdots + 2^{62} \][/tex]
This is a geometric series with the first term [tex]\(a = 2^{31}\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]
For [tex]\(n = 32\)[/tex]:
[tex]\[ S_{32} = 2^{31} \cdot \frac{2^{32} - 1}{2 - 1} = 2^{31} \cdot (2^{32} - 1) \][/tex]
Hence:
[tex]\[ 2^{31} \cdot (2^{32} - 1) = 9223372034707292160 \][/tex]
### Summation 3:
[tex]\[ \sum_{n=1}^{32} 2^{32} \cdot 2^{n-1} \][/tex]
Finally, let's analyze the third summation. Here, [tex]\(2^{32}\)[/tex] is a constant factor multiplied by the geometric series [tex]\(2^{n-1}\)[/tex] over 32 terms.
[tex]\[ \begin{align*} \text{First term: } & 2^{32} \cdot 2^{0} = 2^{32} \\ \text{Second term: } & 2^{32} \cdot 2^{1} = 2^{33} \\ \text{Third term: } & 2^{32} \cdot 2^{2} = 2^{34} \\ \text{Fourth term: } & 2^{32} \cdot 2^{3} = 2^{35} \\ &\vdots \\ \text{Last term: } & 2^{32} \cdot 2^{31} \end{align*} \][/tex]
This sum is:
[tex]\[ 2^{32} + 2^{33} + 2^{34} + \cdots + 2^{63} \][/tex]
This is a geometric series with the first term [tex]\(a = 2^{32}\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]
For [tex]\(n = 32\)[/tex]:
[tex]\[ S_{32} = 2^{32} \cdot \frac{2^{32} - 1}{2 - 1} = 2^{32} \cdot (2^{32} - 1) \][/tex]
Hence:
[tex]\[ 2^{32} \cdot (2^{32} - 1) = 18446744069414584320 \][/tex]
### Conclusion:
The summation that represents the total number of pennies on the chessboard is:
[tex]\[ \sum_{n=1}^{64} 1 \cdot 2^{n-1} \][/tex]
which equals [tex]\(18446744073709551615\)[/tex] pennies.
### Summation 1:
[tex]\[ \sum_{n=1}^{64} 1 \cdot 2^{n-1} \][/tex]
This summation is representing the idea of placing one penny on the first square of a chessboard, and then doubling the number of pennies on each subsequent square. A chessboard has 64 squares. Let's calculate the total number of pennies:
[tex]\[ \begin{align*} \text{First term: } & 1 \cdot 2^{0} = 1 \\ \text{Second term: } & 1 \cdot 2^{1} = 2 \\ \text{Third term: } & 1 \cdot 2^{2} = 4 \\ \text{Fourth term: } & 1 \cdot 2^{3} = 8 \\ &\vdots \\ \text{Last term: } & 1 \cdot 2^{63} \end{align*} \][/tex]
This summation is:
[tex]\[ 1 + 2 + 4 + \cdots + 2^{63} \][/tex]
This is a geometric series with the first term [tex]\(a = 1\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]
For [tex]\(n = 64\)[/tex]:
[tex]\[ S_{64} = 1 \cdot \frac{2^{64} - 1}{2 - 1} = 2^{64} - 1 \][/tex]
Hence, the total number of pennies on the chessboard is:
[tex]\[ 2^{64} - 1 = 18446744073709551615 \][/tex]
### Summation 2:
[tex]\[ \sum_{n=1}^{32} 2^{31} \cdot 2^{n-1} \][/tex]
Now, let's analyze the second summation. Here, [tex]\(2^{31}\)[/tex] is a constant factor multiplied by the geometric series [tex]\(2^{n-1}\)[/tex] over 32 terms.
[tex]\[ \begin{align*} \text{First term: } & 2^{31} \cdot 2^{0} = 2^{31} \\ \text{Second term: } & 2^{31} \cdot 2^{1} = 2^{32} \\ \text{Third term: } & 2^{31} \cdot 2^{2} = 2^{33} \\ \text{Fourth term: } & 2^{31} \cdot 2^{3} = 2^{34} \\ &\vdots \\ \text{Last term: } & 2^{31} \cdot 2^{31} \end{align*} \][/tex]
This sum is:
[tex]\[ 2^{31} + 2^{32} + 2^{33} + \cdots + 2^{62} \][/tex]
This is a geometric series with the first term [tex]\(a = 2^{31}\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]
For [tex]\(n = 32\)[/tex]:
[tex]\[ S_{32} = 2^{31} \cdot \frac{2^{32} - 1}{2 - 1} = 2^{31} \cdot (2^{32} - 1) \][/tex]
Hence:
[tex]\[ 2^{31} \cdot (2^{32} - 1) = 9223372034707292160 \][/tex]
### Summation 3:
[tex]\[ \sum_{n=1}^{32} 2^{32} \cdot 2^{n-1} \][/tex]
Finally, let's analyze the third summation. Here, [tex]\(2^{32}\)[/tex] is a constant factor multiplied by the geometric series [tex]\(2^{n-1}\)[/tex] over 32 terms.
[tex]\[ \begin{align*} \text{First term: } & 2^{32} \cdot 2^{0} = 2^{32} \\ \text{Second term: } & 2^{32} \cdot 2^{1} = 2^{33} \\ \text{Third term: } & 2^{32} \cdot 2^{2} = 2^{34} \\ \text{Fourth term: } & 2^{32} \cdot 2^{3} = 2^{35} \\ &\vdots \\ \text{Last term: } & 2^{32} \cdot 2^{31} \end{align*} \][/tex]
This sum is:
[tex]\[ 2^{32} + 2^{33} + 2^{34} + \cdots + 2^{63} \][/tex]
This is a geometric series with the first term [tex]\(a = 2^{32}\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]
For [tex]\(n = 32\)[/tex]:
[tex]\[ S_{32} = 2^{32} \cdot \frac{2^{32} - 1}{2 - 1} = 2^{32} \cdot (2^{32} - 1) \][/tex]
Hence:
[tex]\[ 2^{32} \cdot (2^{32} - 1) = 18446744069414584320 \][/tex]
### Conclusion:
The summation that represents the total number of pennies on the chessboard is:
[tex]\[ \sum_{n=1}^{64} 1 \cdot 2^{n-1} \][/tex]
which equals [tex]\(18446744073709551615\)[/tex] pennies.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.