Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze each summation step-by-step to determine the one that represents the total number of pennies on the chessboard:
### Summation 1:
[tex]\[ \sum_{n=1}^{64} 1 \cdot 2^{n-1} \][/tex]
This summation is representing the idea of placing one penny on the first square of a chessboard, and then doubling the number of pennies on each subsequent square. A chessboard has 64 squares. Let's calculate the total number of pennies:
[tex]\[ \begin{align*} \text{First term: } & 1 \cdot 2^{0} = 1 \\ \text{Second term: } & 1 \cdot 2^{1} = 2 \\ \text{Third term: } & 1 \cdot 2^{2} = 4 \\ \text{Fourth term: } & 1 \cdot 2^{3} = 8 \\ &\vdots \\ \text{Last term: } & 1 \cdot 2^{63} \end{align*} \][/tex]
This summation is:
[tex]\[ 1 + 2 + 4 + \cdots + 2^{63} \][/tex]
This is a geometric series with the first term [tex]\(a = 1\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]
For [tex]\(n = 64\)[/tex]:
[tex]\[ S_{64} = 1 \cdot \frac{2^{64} - 1}{2 - 1} = 2^{64} - 1 \][/tex]
Hence, the total number of pennies on the chessboard is:
[tex]\[ 2^{64} - 1 = 18446744073709551615 \][/tex]
### Summation 2:
[tex]\[ \sum_{n=1}^{32} 2^{31} \cdot 2^{n-1} \][/tex]
Now, let's analyze the second summation. Here, [tex]\(2^{31}\)[/tex] is a constant factor multiplied by the geometric series [tex]\(2^{n-1}\)[/tex] over 32 terms.
[tex]\[ \begin{align*} \text{First term: } & 2^{31} \cdot 2^{0} = 2^{31} \\ \text{Second term: } & 2^{31} \cdot 2^{1} = 2^{32} \\ \text{Third term: } & 2^{31} \cdot 2^{2} = 2^{33} \\ \text{Fourth term: } & 2^{31} \cdot 2^{3} = 2^{34} \\ &\vdots \\ \text{Last term: } & 2^{31} \cdot 2^{31} \end{align*} \][/tex]
This sum is:
[tex]\[ 2^{31} + 2^{32} + 2^{33} + \cdots + 2^{62} \][/tex]
This is a geometric series with the first term [tex]\(a = 2^{31}\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]
For [tex]\(n = 32\)[/tex]:
[tex]\[ S_{32} = 2^{31} \cdot \frac{2^{32} - 1}{2 - 1} = 2^{31} \cdot (2^{32} - 1) \][/tex]
Hence:
[tex]\[ 2^{31} \cdot (2^{32} - 1) = 9223372034707292160 \][/tex]
### Summation 3:
[tex]\[ \sum_{n=1}^{32} 2^{32} \cdot 2^{n-1} \][/tex]
Finally, let's analyze the third summation. Here, [tex]\(2^{32}\)[/tex] is a constant factor multiplied by the geometric series [tex]\(2^{n-1}\)[/tex] over 32 terms.
[tex]\[ \begin{align*} \text{First term: } & 2^{32} \cdot 2^{0} = 2^{32} \\ \text{Second term: } & 2^{32} \cdot 2^{1} = 2^{33} \\ \text{Third term: } & 2^{32} \cdot 2^{2} = 2^{34} \\ \text{Fourth term: } & 2^{32} \cdot 2^{3} = 2^{35} \\ &\vdots \\ \text{Last term: } & 2^{32} \cdot 2^{31} \end{align*} \][/tex]
This sum is:
[tex]\[ 2^{32} + 2^{33} + 2^{34} + \cdots + 2^{63} \][/tex]
This is a geometric series with the first term [tex]\(a = 2^{32}\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]
For [tex]\(n = 32\)[/tex]:
[tex]\[ S_{32} = 2^{32} \cdot \frac{2^{32} - 1}{2 - 1} = 2^{32} \cdot (2^{32} - 1) \][/tex]
Hence:
[tex]\[ 2^{32} \cdot (2^{32} - 1) = 18446744069414584320 \][/tex]
### Conclusion:
The summation that represents the total number of pennies on the chessboard is:
[tex]\[ \sum_{n=1}^{64} 1 \cdot 2^{n-1} \][/tex]
which equals [tex]\(18446744073709551615\)[/tex] pennies.
### Summation 1:
[tex]\[ \sum_{n=1}^{64} 1 \cdot 2^{n-1} \][/tex]
This summation is representing the idea of placing one penny on the first square of a chessboard, and then doubling the number of pennies on each subsequent square. A chessboard has 64 squares. Let's calculate the total number of pennies:
[tex]\[ \begin{align*} \text{First term: } & 1 \cdot 2^{0} = 1 \\ \text{Second term: } & 1 \cdot 2^{1} = 2 \\ \text{Third term: } & 1 \cdot 2^{2} = 4 \\ \text{Fourth term: } & 1 \cdot 2^{3} = 8 \\ &\vdots \\ \text{Last term: } & 1 \cdot 2^{63} \end{align*} \][/tex]
This summation is:
[tex]\[ 1 + 2 + 4 + \cdots + 2^{63} \][/tex]
This is a geometric series with the first term [tex]\(a = 1\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]
For [tex]\(n = 64\)[/tex]:
[tex]\[ S_{64} = 1 \cdot \frac{2^{64} - 1}{2 - 1} = 2^{64} - 1 \][/tex]
Hence, the total number of pennies on the chessboard is:
[tex]\[ 2^{64} - 1 = 18446744073709551615 \][/tex]
### Summation 2:
[tex]\[ \sum_{n=1}^{32} 2^{31} \cdot 2^{n-1} \][/tex]
Now, let's analyze the second summation. Here, [tex]\(2^{31}\)[/tex] is a constant factor multiplied by the geometric series [tex]\(2^{n-1}\)[/tex] over 32 terms.
[tex]\[ \begin{align*} \text{First term: } & 2^{31} \cdot 2^{0} = 2^{31} \\ \text{Second term: } & 2^{31} \cdot 2^{1} = 2^{32} \\ \text{Third term: } & 2^{31} \cdot 2^{2} = 2^{33} \\ \text{Fourth term: } & 2^{31} \cdot 2^{3} = 2^{34} \\ &\vdots \\ \text{Last term: } & 2^{31} \cdot 2^{31} \end{align*} \][/tex]
This sum is:
[tex]\[ 2^{31} + 2^{32} + 2^{33} + \cdots + 2^{62} \][/tex]
This is a geometric series with the first term [tex]\(a = 2^{31}\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]
For [tex]\(n = 32\)[/tex]:
[tex]\[ S_{32} = 2^{31} \cdot \frac{2^{32} - 1}{2 - 1} = 2^{31} \cdot (2^{32} - 1) \][/tex]
Hence:
[tex]\[ 2^{31} \cdot (2^{32} - 1) = 9223372034707292160 \][/tex]
### Summation 3:
[tex]\[ \sum_{n=1}^{32} 2^{32} \cdot 2^{n-1} \][/tex]
Finally, let's analyze the third summation. Here, [tex]\(2^{32}\)[/tex] is a constant factor multiplied by the geometric series [tex]\(2^{n-1}\)[/tex] over 32 terms.
[tex]\[ \begin{align*} \text{First term: } & 2^{32} \cdot 2^{0} = 2^{32} \\ \text{Second term: } & 2^{32} \cdot 2^{1} = 2^{33} \\ \text{Third term: } & 2^{32} \cdot 2^{2} = 2^{34} \\ \text{Fourth term: } & 2^{32} \cdot 2^{3} = 2^{35} \\ &\vdots \\ \text{Last term: } & 2^{32} \cdot 2^{31} \end{align*} \][/tex]
This sum is:
[tex]\[ 2^{32} + 2^{33} + 2^{34} + \cdots + 2^{63} \][/tex]
This is a geometric series with the first term [tex]\(a = 2^{32}\)[/tex] and common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric series can be calculated using the formula:
[tex]\[ S_n = a \frac{r^n - 1}{r - 1} \][/tex]
For [tex]\(n = 32\)[/tex]:
[tex]\[ S_{32} = 2^{32} \cdot \frac{2^{32} - 1}{2 - 1} = 2^{32} \cdot (2^{32} - 1) \][/tex]
Hence:
[tex]\[ 2^{32} \cdot (2^{32} - 1) = 18446744069414584320 \][/tex]
### Conclusion:
The summation that represents the total number of pennies on the chessboard is:
[tex]\[ \sum_{n=1}^{64} 1 \cdot 2^{n-1} \][/tex]
which equals [tex]\(18446744073709551615\)[/tex] pennies.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.