Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's compare the rational numbers and determine which comparisons are true step-by-step.
1. Comparison i. [tex]\(-4.3 < -3.7\)[/tex]
- When comparing negative numbers, the number that is farther to the left on the number line is the smaller number.
- Since [tex]\(-4.3\)[/tex] is farther to the left than [tex]\(-3.7\)[/tex] on the number line, it means [tex]\( -4.3 < -3.7 \)[/tex].
- Therefore, this comparison is true.
2. Comparison ii. [tex]\(-3.7 < -2.6\)[/tex]
- Following the same logic as above, since [tex]\(-3.7\)[/tex] is farther to the left than [tex]\(-2.6\)[/tex] on the number line, it means [tex]\(-3.7\)[/tex] is less than [tex]\(-2.6\)[/tex].
- Therefore, this comparison is true.
3. Comparison iii. [tex]\(-4.3 > -2.6\)[/tex]
- Again, using the number line, [tex]\(-4.3\)[/tex] is farther to the left than [tex]\(-2.6\)[/tex] which means [tex]\(-4.3\)[/tex] is less than [tex]\(-2.6\)[/tex], not greater.
- Therefore, this comparison is false.
4. Comparison iv. [tex]\(-1.8 > -0.9\)[/tex]
- When comparing negative numbers, the one closer to zero is the larger number.
- Since [tex]\(-1.8\)[/tex] is farther from zero than [tex]\(-0.9\)[/tex], it is smaller.
- Therefore, this comparison is false.
Based on the analysis, the true comparisons are i. [tex]\(-4.3 < -3.7\)[/tex] and ii. [tex]\(-3.7 < -2.6\)[/tex].
So, the correct answer is:
- i and ii
1. Comparison i. [tex]\(-4.3 < -3.7\)[/tex]
- When comparing negative numbers, the number that is farther to the left on the number line is the smaller number.
- Since [tex]\(-4.3\)[/tex] is farther to the left than [tex]\(-3.7\)[/tex] on the number line, it means [tex]\( -4.3 < -3.7 \)[/tex].
- Therefore, this comparison is true.
2. Comparison ii. [tex]\(-3.7 < -2.6\)[/tex]
- Following the same logic as above, since [tex]\(-3.7\)[/tex] is farther to the left than [tex]\(-2.6\)[/tex] on the number line, it means [tex]\(-3.7\)[/tex] is less than [tex]\(-2.6\)[/tex].
- Therefore, this comparison is true.
3. Comparison iii. [tex]\(-4.3 > -2.6\)[/tex]
- Again, using the number line, [tex]\(-4.3\)[/tex] is farther to the left than [tex]\(-2.6\)[/tex] which means [tex]\(-4.3\)[/tex] is less than [tex]\(-2.6\)[/tex], not greater.
- Therefore, this comparison is false.
4. Comparison iv. [tex]\(-1.8 > -0.9\)[/tex]
- When comparing negative numbers, the one closer to zero is the larger number.
- Since [tex]\(-1.8\)[/tex] is farther from zero than [tex]\(-0.9\)[/tex], it is smaller.
- Therefore, this comparison is false.
Based on the analysis, the true comparisons are i. [tex]\(-4.3 < -3.7\)[/tex] and ii. [tex]\(-3.7 < -2.6\)[/tex].
So, the correct answer is:
- i and ii
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.