Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's solve the integral [tex]\(\int \frac{(x-3)}{(x+3)} \, dx\)[/tex] step by step.
Step 1: Begin with the original integral:
[tex]\[ \int \frac{(x-3)}{(x+3)} \, dx \][/tex]
Step 2: Simplify the expression inside the integral by dividing the numerator by the denominator. We can decompose [tex]\(\frac{(x-3)}{(x+3)}\)[/tex] as follows:
[tex]\[ \frac{x-3}{x+3} = \frac{x+3-6}{x+3} = \frac{x+3}{x+3} - \frac{6}{x+3} \][/tex]
Step 3: Split the integral into two simpler integrals:
[tex]\[ \int \left( \frac{x+3}{x+3} - \frac{6}{x+3} \right) \, dx = \int 1 \, dx - \int \frac{6}{x+3} \, dx \][/tex]
Step 4: Solve the first integral:
[tex]\[ \int 1 \, dx = x \][/tex]
Step 5: Solve the second integral. Let [tex]\(u = x + 3\)[/tex], then [tex]\(du = dx\)[/tex]:
[tex]\[ \int \frac{6}{x+3} \, dx = 6 \int \frac{1}{u} \, du = 6 \ln|u| = 6 \ln|x+3| \][/tex]
Step 6: Put everything together:
[tex]\[ \int \frac{(x-3)}{(x+3)} \, dx = x - 6 \ln|x+3| + C \][/tex]
Therefore, the integral [tex]\(\int \frac{(x-3)}{(x+3)} \, dx\)[/tex] evaluates to:
[tex]\[ x - 6 \ln|x+3| + C \][/tex]
Where [tex]\(C\)[/tex] is the constant of integration.
Step 1: Begin with the original integral:
[tex]\[ \int \frac{(x-3)}{(x+3)} \, dx \][/tex]
Step 2: Simplify the expression inside the integral by dividing the numerator by the denominator. We can decompose [tex]\(\frac{(x-3)}{(x+3)}\)[/tex] as follows:
[tex]\[ \frac{x-3}{x+3} = \frac{x+3-6}{x+3} = \frac{x+3}{x+3} - \frac{6}{x+3} \][/tex]
Step 3: Split the integral into two simpler integrals:
[tex]\[ \int \left( \frac{x+3}{x+3} - \frac{6}{x+3} \right) \, dx = \int 1 \, dx - \int \frac{6}{x+3} \, dx \][/tex]
Step 4: Solve the first integral:
[tex]\[ \int 1 \, dx = x \][/tex]
Step 5: Solve the second integral. Let [tex]\(u = x + 3\)[/tex], then [tex]\(du = dx\)[/tex]:
[tex]\[ \int \frac{6}{x+3} \, dx = 6 \int \frac{1}{u} \, du = 6 \ln|u| = 6 \ln|x+3| \][/tex]
Step 6: Put everything together:
[tex]\[ \int \frac{(x-3)}{(x+3)} \, dx = x - 6 \ln|x+3| + C \][/tex]
Therefore, the integral [tex]\(\int \frac{(x-3)}{(x+3)} \, dx\)[/tex] evaluates to:
[tex]\[ x - 6 \ln|x+3| + C \][/tex]
Where [tex]\(C\)[/tex] is the constant of integration.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.