emy383
Answered

Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Given the functions:
[tex]\[ r(x) = 2x \][/tex]
[tex]\[ p(x) = x^2 + 4x \][/tex]
[tex]\[ q(x) = \sqrt{2 - x} \][/tex]

Part 1 of 2:
[tex]\[ \left(\frac{q}{p}\right)(x) = \][/tex]


Sagot :

Let's define the composite function [tex]\(\left(\frac{q}{p}\right)(x)\)[/tex] as given by the problem statement.

To find [tex]\(\left(\frac{q}{p}\right)(x)\)[/tex], we need to use the functions [tex]\(q(x)\)[/tex] and [tex]\(p(x)\)[/tex] provided:

- [tex]\(p(x) = x^2 + 4x\)[/tex]
- [tex]\(q(x) = \sqrt{2 - x}\)[/tex]

The composite function [tex]\(\left(\frac{q}{p}\right)(x)\)[/tex] means we are dividing [tex]\(q(x)\)[/tex] by [tex]\(p(x)\)[/tex]. Therefore, the expression for [tex]\(\left(\frac{q}{p}\right)(x)\)[/tex] will be:

[tex]\[ \left(\frac{q}{p}\right)(x) = \frac{q(x)}{p(x)} \][/tex]

Plugging the expressions for [tex]\(q(x)\)[/tex] and [tex]\(p(x)\)[/tex] into this formula, we get:

[tex]\[ \left(\frac{q}{p}\right)(x) = \frac{\sqrt{2 - x}}{x^2 + 4x} \][/tex]

So, the required composite function [tex]\(\left(\frac{q}{p}\right)(x)\)[/tex] is:

[tex]\[ \left(\frac{q}{p}\right)(x) = \frac{\sqrt{2 - x}}{x^2 + 4x} \][/tex]

This is the expression for [tex]\(\left(\frac{q}{p}\right)(x)\)[/tex].