Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which of the given functions is a logarithmic function, let's analyze the characteristics of each option:
1. Option 1: [tex]\( y = \log_3 x \)[/tex]
This is a logarithmic function because it expresses [tex]\( y \)[/tex] as the logarithm of [tex]\( x \)[/tex] to the base 3. The general form of a logarithmic function is [tex]\( y = \log_b x \)[/tex], where [tex]\( b \)[/tex] is the base of the logarithm. Here, [tex]\( b = 3 \)[/tex].
2. Option 2: [tex]\( y = 3^x \)[/tex]
This is an exponential function, not a logarithmic function. The general form of an exponential function is [tex]\( y = b^x \)[/tex], where [tex]\( b \)[/tex] is the base. Here, [tex]\( b = 3 \)[/tex].
3. Option 3: [tex]\( y = x + 3 \)[/tex]
This is a linear function. It presents [tex]\( y \)[/tex] as a linear combination of [tex]\( x \)[/tex]. The general form for a linear function is [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] is the y-intercept. Here, the slope [tex]\( m = 1 \)[/tex] and the y-intercept [tex]\( c = 3 \)[/tex].
4. Option 4: [tex]\( y = x^3 \)[/tex]
This is a power function, specifically a cubic function. It expresses [tex]\( y \)[/tex] as a polynomial of degree 3. The general form for a polynomial function is [tex]\( y = x^n \)[/tex], where [tex]\( n \)[/tex] is the degree of the polynomial. Here, [tex]\( n = 3 \)[/tex].
Based on the analysis, the function that fits the form of a logarithmic function is:
Option 1: [tex]\( y = \log_3 x \)[/tex]
Hence, [tex]\( y = \log_3 x \)[/tex] is the logarithmic function.
1. Option 1: [tex]\( y = \log_3 x \)[/tex]
This is a logarithmic function because it expresses [tex]\( y \)[/tex] as the logarithm of [tex]\( x \)[/tex] to the base 3. The general form of a logarithmic function is [tex]\( y = \log_b x \)[/tex], where [tex]\( b \)[/tex] is the base of the logarithm. Here, [tex]\( b = 3 \)[/tex].
2. Option 2: [tex]\( y = 3^x \)[/tex]
This is an exponential function, not a logarithmic function. The general form of an exponential function is [tex]\( y = b^x \)[/tex], where [tex]\( b \)[/tex] is the base. Here, [tex]\( b = 3 \)[/tex].
3. Option 3: [tex]\( y = x + 3 \)[/tex]
This is a linear function. It presents [tex]\( y \)[/tex] as a linear combination of [tex]\( x \)[/tex]. The general form for a linear function is [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( c \)[/tex] is the y-intercept. Here, the slope [tex]\( m = 1 \)[/tex] and the y-intercept [tex]\( c = 3 \)[/tex].
4. Option 4: [tex]\( y = x^3 \)[/tex]
This is a power function, specifically a cubic function. It expresses [tex]\( y \)[/tex] as a polynomial of degree 3. The general form for a polynomial function is [tex]\( y = x^n \)[/tex], where [tex]\( n \)[/tex] is the degree of the polynomial. Here, [tex]\( n = 3 \)[/tex].
Based on the analysis, the function that fits the form of a logarithmic function is:
Option 1: [tex]\( y = \log_3 x \)[/tex]
Hence, [tex]\( y = \log_3 x \)[/tex] is the logarithmic function.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.