Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine [tex]\( P(A \cap B) \)[/tex] for two independent events [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we use the property of independent events which states that if two events are independent, the probability of both events occurring simultaneously is the product of their individual probabilities. That is:
[tex]\[ P(A \cap B) = P(A) \cdot P(B) \][/tex]
Given:
[tex]\[ P(A) = \frac{1}{3} \][/tex]
[tex]\[ P(B) = \frac{5}{12} \][/tex]
We will multiply these two probabilities:
[tex]\[ P(A \cap B) = \frac{1}{3} \times \frac{5}{12} \][/tex]
Multiplying the fractions, we get:
[tex]\[ P(A \cap B) = \frac{1 \times 5}{3 \times 12} = \frac{5}{36} \][/tex]
Thus, the probability [tex]\( P(A \cap B) \)[/tex] is:
[tex]\[ P(A \cap B) = 0.1388888888888889 \][/tex]
Therefore,
[tex]\[ P(A \cap B) \approx 0.1389 \][/tex]
This is the probability that both events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] occur simultaneously.
[tex]\[ P(A \cap B) = P(A) \cdot P(B) \][/tex]
Given:
[tex]\[ P(A) = \frac{1}{3} \][/tex]
[tex]\[ P(B) = \frac{5}{12} \][/tex]
We will multiply these two probabilities:
[tex]\[ P(A \cap B) = \frac{1}{3} \times \frac{5}{12} \][/tex]
Multiplying the fractions, we get:
[tex]\[ P(A \cap B) = \frac{1 \times 5}{3 \times 12} = \frac{5}{36} \][/tex]
Thus, the probability [tex]\( P(A \cap B) \)[/tex] is:
[tex]\[ P(A \cap B) = 0.1388888888888889 \][/tex]
Therefore,
[tex]\[ P(A \cap B) \approx 0.1389 \][/tex]
This is the probability that both events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] occur simultaneously.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.