Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine another way of expressing the total amount Anderson earns from month 3 to month 18, we need to analyze and transform the given series expression into different equivalent forms.
The given expression is:
[tex]\[ \sum_{n=3}^{18} [20 + (n-1) \cdot 0.5] \][/tex]
This expression represents the sum of Anderson's earnings from month 3 to month 18 where his monthly earnings increase starting from [tex]$20 and increase by $[/tex]0.50 each month.
Let's examine the other expressions provided to see which one can be equivalent.
### First Expression to Validate
[tex]\[ \sum_{n=1}^{18} 20 + 0.5 \sum_{n=1}^{18} n - 0.5 \sum_{n=1}^{18} 1 - \left( \sum_{n=1}^2 20 + 0.5 \sum_{n=1}^2 n - 0.5 \sum_{n=1}^2 1 \right) \][/tex]
To break it down,
[tex]\[ \sum_{n=1}^{18} 20 \quad + \quad 0.5 \sum_{n=1}^{18} n \quad - \quad 0.5 \sum_{n=1}^{18} 1 \quad - \left( \sum_{n=1}^2 20 \quad + \quad 0.5 \sum_{n=1}^2 n \quad - \quad 0.5 \sum_{n=1}^2 1 \right) \][/tex]
Total earnings from month 1 to 18 minus the total earnings from month 1 to 2. This expression calculates what remains from the earnings of month 3 to 18. It is equivalent to the given series expression.
### Second Expression to Validate
[tex]\[ \sum_{n=1}^{18} 20 + 0.5 \sum_{n=1}^{18} n - 0.5 \sum_{n=1}^{18} 1 - \left( \sum_{n=1}^3 20 + 0.5 \sum_{n=1}^3 n - 0.5 \sum_{n=1}^3 1 \right) \][/tex]
In this case,
[tex]\[ \sum_{n=1}^{18} 20 \quad + \quad 0.5 \sum_{n=1}^{18} n \quad - \quad 0.5 \sum_{n=1}^{18} 1 \quad - \left( \sum_{n=1}^3 20 \quad + \quad 0.5 \sum_{n=1}^3 n \quad - \quad 0.5 \sum_{n=1}^3 1 \right) \][/tex]
Total earnings from month 1 to 18 minus the total earnings from month 1 to 3. This expression calculates what remains from the earnings of month 4 to 18, which is not what we need.
### Third Expression to Validate
[tex]\[ \sum_{n=1}^{18} 20 + 0.5 \sum_{n=1}^{18} n - \left( \sum_{n=1}^2 20 + 0.5 \sum_{n=1}^2 n \right) \][/tex]
Here,
[tex]\[ \sum_{n=1}^{18} 20 \quad + \quad 0.5 \sum_{n=1}^{18} n \quad - \left( \sum_{n=1}^2 20 \quad + \quad 0.5 \sum_{n=1}^2 n \right) \][/tex]
This is again the total earnings from month 1 to 18 minus the total earnings from month 1 to 2. This expression is also equivalent to the given series.
Of these, the correct way of expressing the given amount is:
[tex]\[ \sum_{n=1}^{18} 20 + 0.5 \sum_{n=1}^{18} n - \left( \sum_{n=1}^2 20 + 0.5 \sum_{n=1}^2 n \right) \][/tex]
This third expression matches the solution derived by analyzing the provided series and thus is another way of expressing the total amount Anderson earns from month 3 to month 18:
[tex]\[ \boxed{\sum_{n=1}^{18} 20 + 0.5 \sum_{n=1}^{18} n - \left( \sum_{n=1}^2 20 + 0.5 \sum_{n=1}^2 n \right)} \][/tex]
The given expression is:
[tex]\[ \sum_{n=3}^{18} [20 + (n-1) \cdot 0.5] \][/tex]
This expression represents the sum of Anderson's earnings from month 3 to month 18 where his monthly earnings increase starting from [tex]$20 and increase by $[/tex]0.50 each month.
Let's examine the other expressions provided to see which one can be equivalent.
### First Expression to Validate
[tex]\[ \sum_{n=1}^{18} 20 + 0.5 \sum_{n=1}^{18} n - 0.5 \sum_{n=1}^{18} 1 - \left( \sum_{n=1}^2 20 + 0.5 \sum_{n=1}^2 n - 0.5 \sum_{n=1}^2 1 \right) \][/tex]
To break it down,
[tex]\[ \sum_{n=1}^{18} 20 \quad + \quad 0.5 \sum_{n=1}^{18} n \quad - \quad 0.5 \sum_{n=1}^{18} 1 \quad - \left( \sum_{n=1}^2 20 \quad + \quad 0.5 \sum_{n=1}^2 n \quad - \quad 0.5 \sum_{n=1}^2 1 \right) \][/tex]
Total earnings from month 1 to 18 minus the total earnings from month 1 to 2. This expression calculates what remains from the earnings of month 3 to 18. It is equivalent to the given series expression.
### Second Expression to Validate
[tex]\[ \sum_{n=1}^{18} 20 + 0.5 \sum_{n=1}^{18} n - 0.5 \sum_{n=1}^{18} 1 - \left( \sum_{n=1}^3 20 + 0.5 \sum_{n=1}^3 n - 0.5 \sum_{n=1}^3 1 \right) \][/tex]
In this case,
[tex]\[ \sum_{n=1}^{18} 20 \quad + \quad 0.5 \sum_{n=1}^{18} n \quad - \quad 0.5 \sum_{n=1}^{18} 1 \quad - \left( \sum_{n=1}^3 20 \quad + \quad 0.5 \sum_{n=1}^3 n \quad - \quad 0.5 \sum_{n=1}^3 1 \right) \][/tex]
Total earnings from month 1 to 18 minus the total earnings from month 1 to 3. This expression calculates what remains from the earnings of month 4 to 18, which is not what we need.
### Third Expression to Validate
[tex]\[ \sum_{n=1}^{18} 20 + 0.5 \sum_{n=1}^{18} n - \left( \sum_{n=1}^2 20 + 0.5 \sum_{n=1}^2 n \right) \][/tex]
Here,
[tex]\[ \sum_{n=1}^{18} 20 \quad + \quad 0.5 \sum_{n=1}^{18} n \quad - \left( \sum_{n=1}^2 20 \quad + \quad 0.5 \sum_{n=1}^2 n \right) \][/tex]
This is again the total earnings from month 1 to 18 minus the total earnings from month 1 to 2. This expression is also equivalent to the given series.
Of these, the correct way of expressing the given amount is:
[tex]\[ \sum_{n=1}^{18} 20 + 0.5 \sum_{n=1}^{18} n - \left( \sum_{n=1}^2 20 + 0.5 \sum_{n=1}^2 n \right) \][/tex]
This third expression matches the solution derived by analyzing the provided series and thus is another way of expressing the total amount Anderson earns from month 3 to month 18:
[tex]\[ \boxed{\sum_{n=1}^{18} 20 + 0.5 \sum_{n=1}^{18} n - \left( \sum_{n=1}^2 20 + 0.5 \sum_{n=1}^2 n \right)} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.