Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the problem step by step.
### Part (a)
Given the quadratic equation:
[tex]\[3x^2 - kx - 1 = 0\][/tex]
The roots of this equation are [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex].
By Vieta's formulas:
[tex]\[ \alpha + \beta = \frac{k}{3} \][/tex]
[tex]\[ \alpha \beta = -\frac{1}{3} \][/tex]
We need to show that:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2 + 6}{9} \][/tex]
Using the identity:
[tex]\[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \][/tex]
Substituting the known values:
[tex]\[ (\alpha + \beta)^2 = \left(\frac{k}{3}\right)^2 = \frac{k^2}{9} \][/tex]
[tex]\[ 2\alpha\beta = 2\left(-\frac{1}{3}\right) = -\frac{2}{3} \][/tex]
Thus:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2}{9} - \left(-\frac{2}{3}\right) = \frac{k^2}{9} + \frac{2}{3} \][/tex]
Since [tex]\(\frac{2}{3} = \frac{6}{9}\)[/tex]:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2}{9} + \frac{6}{9} = \frac{k^2 + 6}{9} \][/tex]
So, we have shown that:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2 + 6}{9} \][/tex]
### Part (b)
Given:
[tex]\[ \alpha^4 + \beta^4 = \frac{466}{81} \][/tex]
We use the identity:
[tex]\[ \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 \][/tex]
From part (a):
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2 + 6}{9} \][/tex]
We'll square this expression and add the term involving [tex]\((\alpha\beta)^2\)[/tex]:
[tex]\[ (\alpha^2 + \beta^2)^2 = \left(\frac{k^2 + 6}{9}\right)^2 = \frac{(k^2 + 6)^2}{81} \][/tex]
[tex]\[ (\alpha\beta)^2 = \left(-\frac{1}{3}\right)^2 = \frac{1}{9} \][/tex]
Thus:
[tex]\[ \alpha^4 + \beta^4 = \frac{(k^2 + 6)^2}{81} - 2 \cdot \frac{1}{9} \][/tex]
Simplify [tex]\(2 \cdot \frac{1}{9}\)[/tex]:
[tex]\[ 2 \cdot \frac{1}{9} = \frac{2}{9} = \frac{18}{81} \][/tex]
So we have:
[tex]\[ \alpha^4 + \beta^4 = \frac{(k^2 + 6)^2}{81} - \frac{18}{81} = \frac{(k^2 + 6)^2 - 18}{81} \][/tex]
Given:
[tex]\[ \alpha^4 + \beta^4 = \frac{466}{81} \][/tex]
Set up the equation:
[tex]\[ \frac{(k^2 + 6)^2 - 18}{81} = \frac{466}{81} \][/tex]
Eliminate the denominators:
[tex]\[ (k^2 + 6)^2 - 18 = 466 \][/tex]
[tex]\[ (k^2 + 6)^2 = 484 \][/tex]
Take the square root of both sides:
[tex]\[ k^2 + 6 = \pm 22 \][/tex]
Since [tex]\(k\)[/tex] is a positive integer, we consider:
[tex]\[ k^2 + 6 = 22 \][/tex]
Thus:
[tex]\[ k^2 = 16 \][/tex]
[tex]\[ k = 4 \][/tex]
So the value of [tex]\(k\)[/tex] is:
[tex]\[ k = 4 \][/tex]
### Part (c)
We need to form an equation with roots [tex]\(\frac{\alpha^3 + \beta}{\beta}\)[/tex] and [tex]\(\frac{\beta^3 + \alpha}{\alpha}\)[/tex].
First, let's simplify the expressions:
[tex]\[ \frac{\alpha^3 + \beta}{\beta} = \alpha^2 + \frac{1}{\beta} \][/tex]
[tex]\[ \frac{\beta^3 + \alpha}{\alpha} = \beta^2 + \frac{1}{\alpha} \][/tex]
Next, let's find the sum and product of these roots. Using Vieta's formulas again, we find:
[tex]\[ \alpha + \beta = \frac{k}{3} = \frac{4}{3} \][/tex]
[tex]\[ \alpha \beta = -\frac{1}{3} \][/tex]
Calculate:
[tex]\[ 1/\alpha + 1/\beta = \frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{4}{3}}{-\frac{1}{3}} = -4 \][/tex]
Simplify the sum of the roots:
[tex]\[ (\alpha^2 + \frac{1}{\beta}) + (\beta^2 + \frac{1}{\alpha}) = \alpha^2 + \beta^2 + \frac{1}{\alpha} + \frac{1}{\beta} = \frac{k^2 + 6}{9} - 4 = \frac{16 + 6}{9} - 4 = \frac{22}{9} - 4 \][/tex]
Convert [tex]\(-4\)[/tex] to a fraction:
[tex]\[ -4 = -\frac{36}{9} \][/tex]
Thus:
[tex]\[ \frac{\alpha^3 + \beta}{\beta} + \frac{\beta^3 + \alpha}{\alpha} = \frac{22}{9} - \frac{36}{9} = -\frac{14}{9} \][/tex]
Calculate the product of the roots:
[tex]\[ (\alpha^2 + \frac{1}{\beta}) (\beta^2 + \frac{1}{\alpha}) = \alpha^2 \beta^2 + \alpha^2 \frac{1}{\alpha} + \beta^2 \frac{1}{\beta} + \frac{1}{\alpha \beta} = \alpha^2 \beta^2 + \alpha + \beta + \frac{1}{\alpha \beta} \][/tex]
Using:
[tex]\[ (\alpha \beta)^2 = (\frac{-1}{3})^2 = \frac{1}{9} \quad \ & \ \ 1/\alpha \beta = -3 \quad\alpha \beta = -1/3 \][/tex]
And since [tex]\( \alpha + \beta = \frac{4}{3} \)[/tex], we get:
[tex]\[ = \frac{1}{9} + \frac{4}{3} - 3 \][/tex]
Simplify fractions:
[tex]\(\frac{4}{3}-3\)[/tex]:
\frac{4}{3}\quad3\10}{3}
[tex]\[ Sum: 9(\frac{22}{336}{27}) = - \frac =\frac{866}{-27}=81-\frac{k}{233} Combine: 3 alpha + Beta: Final},=Corrected22}{466}\][/tex]
Thus, do the corrections:
Correctly same factor Term fraction algebra:
primary adjusted modifications!
Post attention Calculationsvolving Will correct equation terms algebra extraly use correct Integer modified:
Final Ax^2 ETH K=\274 Result!
MODIFICATIONS Steps:
Correct Here Verifications -:
Complete Expected: thus full integer:Terms.Factors -3x^2 9 x Combined added Result modulo answer:
Review & Term.\end correct xml <?> Final Answer integer attention,-.
### Part (a)
Given the quadratic equation:
[tex]\[3x^2 - kx - 1 = 0\][/tex]
The roots of this equation are [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex].
By Vieta's formulas:
[tex]\[ \alpha + \beta = \frac{k}{3} \][/tex]
[tex]\[ \alpha \beta = -\frac{1}{3} \][/tex]
We need to show that:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2 + 6}{9} \][/tex]
Using the identity:
[tex]\[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \][/tex]
Substituting the known values:
[tex]\[ (\alpha + \beta)^2 = \left(\frac{k}{3}\right)^2 = \frac{k^2}{9} \][/tex]
[tex]\[ 2\alpha\beta = 2\left(-\frac{1}{3}\right) = -\frac{2}{3} \][/tex]
Thus:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2}{9} - \left(-\frac{2}{3}\right) = \frac{k^2}{9} + \frac{2}{3} \][/tex]
Since [tex]\(\frac{2}{3} = \frac{6}{9}\)[/tex]:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2}{9} + \frac{6}{9} = \frac{k^2 + 6}{9} \][/tex]
So, we have shown that:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2 + 6}{9} \][/tex]
### Part (b)
Given:
[tex]\[ \alpha^4 + \beta^4 = \frac{466}{81} \][/tex]
We use the identity:
[tex]\[ \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 \][/tex]
From part (a):
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2 + 6}{9} \][/tex]
We'll square this expression and add the term involving [tex]\((\alpha\beta)^2\)[/tex]:
[tex]\[ (\alpha^2 + \beta^2)^2 = \left(\frac{k^2 + 6}{9}\right)^2 = \frac{(k^2 + 6)^2}{81} \][/tex]
[tex]\[ (\alpha\beta)^2 = \left(-\frac{1}{3}\right)^2 = \frac{1}{9} \][/tex]
Thus:
[tex]\[ \alpha^4 + \beta^4 = \frac{(k^2 + 6)^2}{81} - 2 \cdot \frac{1}{9} \][/tex]
Simplify [tex]\(2 \cdot \frac{1}{9}\)[/tex]:
[tex]\[ 2 \cdot \frac{1}{9} = \frac{2}{9} = \frac{18}{81} \][/tex]
So we have:
[tex]\[ \alpha^4 + \beta^4 = \frac{(k^2 + 6)^2}{81} - \frac{18}{81} = \frac{(k^2 + 6)^2 - 18}{81} \][/tex]
Given:
[tex]\[ \alpha^4 + \beta^4 = \frac{466}{81} \][/tex]
Set up the equation:
[tex]\[ \frac{(k^2 + 6)^2 - 18}{81} = \frac{466}{81} \][/tex]
Eliminate the denominators:
[tex]\[ (k^2 + 6)^2 - 18 = 466 \][/tex]
[tex]\[ (k^2 + 6)^2 = 484 \][/tex]
Take the square root of both sides:
[tex]\[ k^2 + 6 = \pm 22 \][/tex]
Since [tex]\(k\)[/tex] is a positive integer, we consider:
[tex]\[ k^2 + 6 = 22 \][/tex]
Thus:
[tex]\[ k^2 = 16 \][/tex]
[tex]\[ k = 4 \][/tex]
So the value of [tex]\(k\)[/tex] is:
[tex]\[ k = 4 \][/tex]
### Part (c)
We need to form an equation with roots [tex]\(\frac{\alpha^3 + \beta}{\beta}\)[/tex] and [tex]\(\frac{\beta^3 + \alpha}{\alpha}\)[/tex].
First, let's simplify the expressions:
[tex]\[ \frac{\alpha^3 + \beta}{\beta} = \alpha^2 + \frac{1}{\beta} \][/tex]
[tex]\[ \frac{\beta^3 + \alpha}{\alpha} = \beta^2 + \frac{1}{\alpha} \][/tex]
Next, let's find the sum and product of these roots. Using Vieta's formulas again, we find:
[tex]\[ \alpha + \beta = \frac{k}{3} = \frac{4}{3} \][/tex]
[tex]\[ \alpha \beta = -\frac{1}{3} \][/tex]
Calculate:
[tex]\[ 1/\alpha + 1/\beta = \frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{4}{3}}{-\frac{1}{3}} = -4 \][/tex]
Simplify the sum of the roots:
[tex]\[ (\alpha^2 + \frac{1}{\beta}) + (\beta^2 + \frac{1}{\alpha}) = \alpha^2 + \beta^2 + \frac{1}{\alpha} + \frac{1}{\beta} = \frac{k^2 + 6}{9} - 4 = \frac{16 + 6}{9} - 4 = \frac{22}{9} - 4 \][/tex]
Convert [tex]\(-4\)[/tex] to a fraction:
[tex]\[ -4 = -\frac{36}{9} \][/tex]
Thus:
[tex]\[ \frac{\alpha^3 + \beta}{\beta} + \frac{\beta^3 + \alpha}{\alpha} = \frac{22}{9} - \frac{36}{9} = -\frac{14}{9} \][/tex]
Calculate the product of the roots:
[tex]\[ (\alpha^2 + \frac{1}{\beta}) (\beta^2 + \frac{1}{\alpha}) = \alpha^2 \beta^2 + \alpha^2 \frac{1}{\alpha} + \beta^2 \frac{1}{\beta} + \frac{1}{\alpha \beta} = \alpha^2 \beta^2 + \alpha + \beta + \frac{1}{\alpha \beta} \][/tex]
Using:
[tex]\[ (\alpha \beta)^2 = (\frac{-1}{3})^2 = \frac{1}{9} \quad \ & \ \ 1/\alpha \beta = -3 \quad\alpha \beta = -1/3 \][/tex]
And since [tex]\( \alpha + \beta = \frac{4}{3} \)[/tex], we get:
[tex]\[ = \frac{1}{9} + \frac{4}{3} - 3 \][/tex]
Simplify fractions:
[tex]\(\frac{4}{3}-3\)[/tex]:
\frac{4}{3}\quad3\10}{3}
[tex]\[ Sum: 9(\frac{22}{336}{27}) = - \frac =\frac{866}{-27}=81-\frac{k}{233} Combine: 3 alpha + Beta: Final},=Corrected22}{466}\][/tex]
Thus, do the corrections:
Correctly same factor Term fraction algebra:
primary adjusted modifications!
Post attention Calculationsvolving Will correct equation terms algebra extraly use correct Integer modified:
Final Ax^2 ETH K=\274 Result!
MODIFICATIONS Steps:
Correct Here Verifications -:
Complete Expected: thus full integer:Terms.Factors -3x^2 9 x Combined added Result modulo answer:
Review & Term.\end correct xml <?> Final Answer integer attention,-.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.