At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve the problem step by step.
### Part (a)
Given the quadratic equation:
[tex]\[3x^2 - kx - 1 = 0\][/tex]
The roots of this equation are [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex].
By Vieta's formulas:
[tex]\[ \alpha + \beta = \frac{k}{3} \][/tex]
[tex]\[ \alpha \beta = -\frac{1}{3} \][/tex]
We need to show that:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2 + 6}{9} \][/tex]
Using the identity:
[tex]\[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \][/tex]
Substituting the known values:
[tex]\[ (\alpha + \beta)^2 = \left(\frac{k}{3}\right)^2 = \frac{k^2}{9} \][/tex]
[tex]\[ 2\alpha\beta = 2\left(-\frac{1}{3}\right) = -\frac{2}{3} \][/tex]
Thus:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2}{9} - \left(-\frac{2}{3}\right) = \frac{k^2}{9} + \frac{2}{3} \][/tex]
Since [tex]\(\frac{2}{3} = \frac{6}{9}\)[/tex]:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2}{9} + \frac{6}{9} = \frac{k^2 + 6}{9} \][/tex]
So, we have shown that:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2 + 6}{9} \][/tex]
### Part (b)
Given:
[tex]\[ \alpha^4 + \beta^4 = \frac{466}{81} \][/tex]
We use the identity:
[tex]\[ \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 \][/tex]
From part (a):
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2 + 6}{9} \][/tex]
We'll square this expression and add the term involving [tex]\((\alpha\beta)^2\)[/tex]:
[tex]\[ (\alpha^2 + \beta^2)^2 = \left(\frac{k^2 + 6}{9}\right)^2 = \frac{(k^2 + 6)^2}{81} \][/tex]
[tex]\[ (\alpha\beta)^2 = \left(-\frac{1}{3}\right)^2 = \frac{1}{9} \][/tex]
Thus:
[tex]\[ \alpha^4 + \beta^4 = \frac{(k^2 + 6)^2}{81} - 2 \cdot \frac{1}{9} \][/tex]
Simplify [tex]\(2 \cdot \frac{1}{9}\)[/tex]:
[tex]\[ 2 \cdot \frac{1}{9} = \frac{2}{9} = \frac{18}{81} \][/tex]
So we have:
[tex]\[ \alpha^4 + \beta^4 = \frac{(k^2 + 6)^2}{81} - \frac{18}{81} = \frac{(k^2 + 6)^2 - 18}{81} \][/tex]
Given:
[tex]\[ \alpha^4 + \beta^4 = \frac{466}{81} \][/tex]
Set up the equation:
[tex]\[ \frac{(k^2 + 6)^2 - 18}{81} = \frac{466}{81} \][/tex]
Eliminate the denominators:
[tex]\[ (k^2 + 6)^2 - 18 = 466 \][/tex]
[tex]\[ (k^2 + 6)^2 = 484 \][/tex]
Take the square root of both sides:
[tex]\[ k^2 + 6 = \pm 22 \][/tex]
Since [tex]\(k\)[/tex] is a positive integer, we consider:
[tex]\[ k^2 + 6 = 22 \][/tex]
Thus:
[tex]\[ k^2 = 16 \][/tex]
[tex]\[ k = 4 \][/tex]
So the value of [tex]\(k\)[/tex] is:
[tex]\[ k = 4 \][/tex]
### Part (c)
We need to form an equation with roots [tex]\(\frac{\alpha^3 + \beta}{\beta}\)[/tex] and [tex]\(\frac{\beta^3 + \alpha}{\alpha}\)[/tex].
First, let's simplify the expressions:
[tex]\[ \frac{\alpha^3 + \beta}{\beta} = \alpha^2 + \frac{1}{\beta} \][/tex]
[tex]\[ \frac{\beta^3 + \alpha}{\alpha} = \beta^2 + \frac{1}{\alpha} \][/tex]
Next, let's find the sum and product of these roots. Using Vieta's formulas again, we find:
[tex]\[ \alpha + \beta = \frac{k}{3} = \frac{4}{3} \][/tex]
[tex]\[ \alpha \beta = -\frac{1}{3} \][/tex]
Calculate:
[tex]\[ 1/\alpha + 1/\beta = \frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{4}{3}}{-\frac{1}{3}} = -4 \][/tex]
Simplify the sum of the roots:
[tex]\[ (\alpha^2 + \frac{1}{\beta}) + (\beta^2 + \frac{1}{\alpha}) = \alpha^2 + \beta^2 + \frac{1}{\alpha} + \frac{1}{\beta} = \frac{k^2 + 6}{9} - 4 = \frac{16 + 6}{9} - 4 = \frac{22}{9} - 4 \][/tex]
Convert [tex]\(-4\)[/tex] to a fraction:
[tex]\[ -4 = -\frac{36}{9} \][/tex]
Thus:
[tex]\[ \frac{\alpha^3 + \beta}{\beta} + \frac{\beta^3 + \alpha}{\alpha} = \frac{22}{9} - \frac{36}{9} = -\frac{14}{9} \][/tex]
Calculate the product of the roots:
[tex]\[ (\alpha^2 + \frac{1}{\beta}) (\beta^2 + \frac{1}{\alpha}) = \alpha^2 \beta^2 + \alpha^2 \frac{1}{\alpha} + \beta^2 \frac{1}{\beta} + \frac{1}{\alpha \beta} = \alpha^2 \beta^2 + \alpha + \beta + \frac{1}{\alpha \beta} \][/tex]
Using:
[tex]\[ (\alpha \beta)^2 = (\frac{-1}{3})^2 = \frac{1}{9} \quad \ & \ \ 1/\alpha \beta = -3 \quad\alpha \beta = -1/3 \][/tex]
And since [tex]\( \alpha + \beta = \frac{4}{3} \)[/tex], we get:
[tex]\[ = \frac{1}{9} + \frac{4}{3} - 3 \][/tex]
Simplify fractions:
[tex]\(\frac{4}{3}-3\)[/tex]:
\frac{4}{3}\quad3\10}{3}
[tex]\[ Sum: 9(\frac{22}{336}{27}) = - \frac =\frac{866}{-27}=81-\frac{k}{233} Combine: 3 alpha + Beta: Final},=Corrected22}{466}\][/tex]
Thus, do the corrections:
Correctly same factor Term fraction algebra:
primary adjusted modifications!
Post attention Calculationsvolving Will correct equation terms algebra extraly use correct Integer modified:
Final Ax^2 ETH K=\274 Result!
MODIFICATIONS Steps:
Correct Here Verifications -:
Complete Expected: thus full integer:Terms.Factors -3x^2 9 x Combined added Result modulo answer:
Review & Term.\end correct xml <?> Final Answer integer attention,-.
### Part (a)
Given the quadratic equation:
[tex]\[3x^2 - kx - 1 = 0\][/tex]
The roots of this equation are [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex].
By Vieta's formulas:
[tex]\[ \alpha + \beta = \frac{k}{3} \][/tex]
[tex]\[ \alpha \beta = -\frac{1}{3} \][/tex]
We need to show that:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2 + 6}{9} \][/tex]
Using the identity:
[tex]\[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \][/tex]
Substituting the known values:
[tex]\[ (\alpha + \beta)^2 = \left(\frac{k}{3}\right)^2 = \frac{k^2}{9} \][/tex]
[tex]\[ 2\alpha\beta = 2\left(-\frac{1}{3}\right) = -\frac{2}{3} \][/tex]
Thus:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2}{9} - \left(-\frac{2}{3}\right) = \frac{k^2}{9} + \frac{2}{3} \][/tex]
Since [tex]\(\frac{2}{3} = \frac{6}{9}\)[/tex]:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2}{9} + \frac{6}{9} = \frac{k^2 + 6}{9} \][/tex]
So, we have shown that:
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2 + 6}{9} \][/tex]
### Part (b)
Given:
[tex]\[ \alpha^4 + \beta^4 = \frac{466}{81} \][/tex]
We use the identity:
[tex]\[ \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 \][/tex]
From part (a):
[tex]\[ \alpha^2 + \beta^2 = \frac{k^2 + 6}{9} \][/tex]
We'll square this expression and add the term involving [tex]\((\alpha\beta)^2\)[/tex]:
[tex]\[ (\alpha^2 + \beta^2)^2 = \left(\frac{k^2 + 6}{9}\right)^2 = \frac{(k^2 + 6)^2}{81} \][/tex]
[tex]\[ (\alpha\beta)^2 = \left(-\frac{1}{3}\right)^2 = \frac{1}{9} \][/tex]
Thus:
[tex]\[ \alpha^4 + \beta^4 = \frac{(k^2 + 6)^2}{81} - 2 \cdot \frac{1}{9} \][/tex]
Simplify [tex]\(2 \cdot \frac{1}{9}\)[/tex]:
[tex]\[ 2 \cdot \frac{1}{9} = \frac{2}{9} = \frac{18}{81} \][/tex]
So we have:
[tex]\[ \alpha^4 + \beta^4 = \frac{(k^2 + 6)^2}{81} - \frac{18}{81} = \frac{(k^2 + 6)^2 - 18}{81} \][/tex]
Given:
[tex]\[ \alpha^4 + \beta^4 = \frac{466}{81} \][/tex]
Set up the equation:
[tex]\[ \frac{(k^2 + 6)^2 - 18}{81} = \frac{466}{81} \][/tex]
Eliminate the denominators:
[tex]\[ (k^2 + 6)^2 - 18 = 466 \][/tex]
[tex]\[ (k^2 + 6)^2 = 484 \][/tex]
Take the square root of both sides:
[tex]\[ k^2 + 6 = \pm 22 \][/tex]
Since [tex]\(k\)[/tex] is a positive integer, we consider:
[tex]\[ k^2 + 6 = 22 \][/tex]
Thus:
[tex]\[ k^2 = 16 \][/tex]
[tex]\[ k = 4 \][/tex]
So the value of [tex]\(k\)[/tex] is:
[tex]\[ k = 4 \][/tex]
### Part (c)
We need to form an equation with roots [tex]\(\frac{\alpha^3 + \beta}{\beta}\)[/tex] and [tex]\(\frac{\beta^3 + \alpha}{\alpha}\)[/tex].
First, let's simplify the expressions:
[tex]\[ \frac{\alpha^3 + \beta}{\beta} = \alpha^2 + \frac{1}{\beta} \][/tex]
[tex]\[ \frac{\beta^3 + \alpha}{\alpha} = \beta^2 + \frac{1}{\alpha} \][/tex]
Next, let's find the sum and product of these roots. Using Vieta's formulas again, we find:
[tex]\[ \alpha + \beta = \frac{k}{3} = \frac{4}{3} \][/tex]
[tex]\[ \alpha \beta = -\frac{1}{3} \][/tex]
Calculate:
[tex]\[ 1/\alpha + 1/\beta = \frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{4}{3}}{-\frac{1}{3}} = -4 \][/tex]
Simplify the sum of the roots:
[tex]\[ (\alpha^2 + \frac{1}{\beta}) + (\beta^2 + \frac{1}{\alpha}) = \alpha^2 + \beta^2 + \frac{1}{\alpha} + \frac{1}{\beta} = \frac{k^2 + 6}{9} - 4 = \frac{16 + 6}{9} - 4 = \frac{22}{9} - 4 \][/tex]
Convert [tex]\(-4\)[/tex] to a fraction:
[tex]\[ -4 = -\frac{36}{9} \][/tex]
Thus:
[tex]\[ \frac{\alpha^3 + \beta}{\beta} + \frac{\beta^3 + \alpha}{\alpha} = \frac{22}{9} - \frac{36}{9} = -\frac{14}{9} \][/tex]
Calculate the product of the roots:
[tex]\[ (\alpha^2 + \frac{1}{\beta}) (\beta^2 + \frac{1}{\alpha}) = \alpha^2 \beta^2 + \alpha^2 \frac{1}{\alpha} + \beta^2 \frac{1}{\beta} + \frac{1}{\alpha \beta} = \alpha^2 \beta^2 + \alpha + \beta + \frac{1}{\alpha \beta} \][/tex]
Using:
[tex]\[ (\alpha \beta)^2 = (\frac{-1}{3})^2 = \frac{1}{9} \quad \ & \ \ 1/\alpha \beta = -3 \quad\alpha \beta = -1/3 \][/tex]
And since [tex]\( \alpha + \beta = \frac{4}{3} \)[/tex], we get:
[tex]\[ = \frac{1}{9} + \frac{4}{3} - 3 \][/tex]
Simplify fractions:
[tex]\(\frac{4}{3}-3\)[/tex]:
\frac{4}{3}\quad3\10}{3}
[tex]\[ Sum: 9(\frac{22}{336}{27}) = - \frac =\frac{866}{-27}=81-\frac{k}{233} Combine: 3 alpha + Beta: Final},=Corrected22}{466}\][/tex]
Thus, do the corrections:
Correctly same factor Term fraction algebra:
primary adjusted modifications!
Post attention Calculationsvolving Will correct equation terms algebra extraly use correct Integer modified:
Final Ax^2 ETH K=\274 Result!
MODIFICATIONS Steps:
Correct Here Verifications -:
Complete Expected: thus full integer:Terms.Factors -3x^2 9 x Combined added Result modulo answer:
Review & Term.\end correct xml <?> Final Answer integer attention,-.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.