Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The equation of a circle in its general form is given by:
[tex]\[ x^2 + y^2 + Cx + Dy + E = 0 \][/tex]
To understand how a horizontal move to the left affects the coefficients [tex]\(C\)[/tex] and [tex]\(D\)[/tex], we first need to convert this equation to the center-radius form and then see how the shift modifies it. Let's proceed step-by-step:
### Step 1: Convert to Center-Radius Form
The general form [tex]\( x^2 + y^2 + Cx + Dy + E = 0 \)[/tex] can be completed to match the form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex].
Complete the square for both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:
[tex]\[ x^2 + Cx \to (x + \frac{C}{2})^2 - \left( \frac{C}{2} \right)^2 \][/tex]
[tex]\[ y^2 + Dy \to (y + \frac{D}{2})^2 - \left( \frac{D}{2} \right)^2 \][/tex]
So, the equation becomes:
[tex]\[ (x + \frac{C}{2})^2 - \left( \frac{C}{2} \right)^2 + (y + \frac{D}{2})^2 - \left( \frac{D}{2} \right)^2 + E = 0 \][/tex]
Combine the constant terms to isolate the squared form:
[tex]\[ (x + \frac{C}{2})^2 + (y + \frac{D}{2})^2 = \left( \frac{C}{2} \right)^2 + \left( \frac{D}{2} \right)^2 - E \][/tex]
This gives us the center of the circle [tex]\((- \frac{C}{2}, - \frac{D}{2})\)[/tex] and radius [tex]\(r = \sqrt{\left( \frac{C}{2} \right)^2 + \left( \frac{D}{2} \right)^2 - E}\)[/tex].
### Step 2: Translate the Circle
If the circle is moved horizontally to the left by [tex]\(a\)[/tex] units, the new center will be:
[tex]\[ \left(- \frac{C}{2} - a, - \frac{D}{2} \right) \][/tex]
### Step 3: New Equation of Circle
With the new center, the equation of the circle in center-radius form is:
[tex]\[ \left( x - \left( -\frac{C}{2} - a \right) \right)^2 + \left( y + \frac{D}{2} \right)^2 = r^2 \][/tex]
[tex]\[ \left( x + \frac{C}{2} + a \right)^2 + \left( y + \frac{D}{2} \right)^2 = r^2 \][/tex]
### Step 4: Convert Back to General Form
Expand and simplify this new equation:
[tex]\[ \left( x + \frac{C}{2} + a \right)^2 + \left( y + \frac{D}{2} \right)^2 = r^2 \][/tex]
[tex]\[ x^2 + 2x\left( \frac{C}{2} + a \right) + \left( \frac{C}{2} + a \right)^2 + y^2 + Dy + \left( \frac{D}{2} \right)^2 = r^2\][/tex]
Comparing this with the standard form [tex]\( x^2 + y^2 + C'x + D'y + E' = 0 \)[/tex]:
[tex]\[ x^2 + y^2 + 2x\left( \frac{C}{2} + a \right) + C + k\][/tex]
We can see that the new coefficients [tex]\(C'\)[/tex] and [tex]\(D'\)[/tex] are given by:
[tex]\[ C' = 2\left( \frac{C}{2} + a \right) = C + 2a \][/tex]
The coefficient [tex]\( D \)[/tex] does not change, as there was no vertical shift:
[tex]\[ D' = D \][/tex]
### Conclusion
By translating the circle horizontally to the left by [tex]\(a\)[/tex] units:
- The new coefficient [tex]\( C' \)[/tex] becomes [tex]\( C + 2a \)[/tex]
- The coefficient [tex]\( D \)[/tex] remains unchanged.
[tex]\[ x^2 + y^2 + Cx + Dy + E = 0 \][/tex]
To understand how a horizontal move to the left affects the coefficients [tex]\(C\)[/tex] and [tex]\(D\)[/tex], we first need to convert this equation to the center-radius form and then see how the shift modifies it. Let's proceed step-by-step:
### Step 1: Convert to Center-Radius Form
The general form [tex]\( x^2 + y^2 + Cx + Dy + E = 0 \)[/tex] can be completed to match the form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex].
Complete the square for both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:
[tex]\[ x^2 + Cx \to (x + \frac{C}{2})^2 - \left( \frac{C}{2} \right)^2 \][/tex]
[tex]\[ y^2 + Dy \to (y + \frac{D}{2})^2 - \left( \frac{D}{2} \right)^2 \][/tex]
So, the equation becomes:
[tex]\[ (x + \frac{C}{2})^2 - \left( \frac{C}{2} \right)^2 + (y + \frac{D}{2})^2 - \left( \frac{D}{2} \right)^2 + E = 0 \][/tex]
Combine the constant terms to isolate the squared form:
[tex]\[ (x + \frac{C}{2})^2 + (y + \frac{D}{2})^2 = \left( \frac{C}{2} \right)^2 + \left( \frac{D}{2} \right)^2 - E \][/tex]
This gives us the center of the circle [tex]\((- \frac{C}{2}, - \frac{D}{2})\)[/tex] and radius [tex]\(r = \sqrt{\left( \frac{C}{2} \right)^2 + \left( \frac{D}{2} \right)^2 - E}\)[/tex].
### Step 2: Translate the Circle
If the circle is moved horizontally to the left by [tex]\(a\)[/tex] units, the new center will be:
[tex]\[ \left(- \frac{C}{2} - a, - \frac{D}{2} \right) \][/tex]
### Step 3: New Equation of Circle
With the new center, the equation of the circle in center-radius form is:
[tex]\[ \left( x - \left( -\frac{C}{2} - a \right) \right)^2 + \left( y + \frac{D}{2} \right)^2 = r^2 \][/tex]
[tex]\[ \left( x + \frac{C}{2} + a \right)^2 + \left( y + \frac{D}{2} \right)^2 = r^2 \][/tex]
### Step 4: Convert Back to General Form
Expand and simplify this new equation:
[tex]\[ \left( x + \frac{C}{2} + a \right)^2 + \left( y + \frac{D}{2} \right)^2 = r^2 \][/tex]
[tex]\[ x^2 + 2x\left( \frac{C}{2} + a \right) + \left( \frac{C}{2} + a \right)^2 + y^2 + Dy + \left( \frac{D}{2} \right)^2 = r^2\][/tex]
Comparing this with the standard form [tex]\( x^2 + y^2 + C'x + D'y + E' = 0 \)[/tex]:
[tex]\[ x^2 + y^2 + 2x\left( \frac{C}{2} + a \right) + C + k\][/tex]
We can see that the new coefficients [tex]\(C'\)[/tex] and [tex]\(D'\)[/tex] are given by:
[tex]\[ C' = 2\left( \frac{C}{2} + a \right) = C + 2a \][/tex]
The coefficient [tex]\( D \)[/tex] does not change, as there was no vertical shift:
[tex]\[ D' = D \][/tex]
### Conclusion
By translating the circle horizontally to the left by [tex]\(a\)[/tex] units:
- The new coefficient [tex]\( C' \)[/tex] becomes [tex]\( C + 2a \)[/tex]
- The coefficient [tex]\( D \)[/tex] remains unchanged.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.