At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's break down the transformations step by step to understand how the new function is derived from the parent function [tex]\( f(x) = |x| \)[/tex].
1. Shift 5 units to the right:
- When we shift a function horizontally, we replace [tex]\( x \)[/tex] with [tex]\( x - h \)[/tex] where [tex]\( h \)[/tex] is the number of units we're shifting. In this case, we're shifting 5 units to the right, so we replace [tex]\( x \)[/tex] with [tex]\( x - 5 \)[/tex].
- Therefore, [tex]\( f(x) = |x| \)[/tex] becomes [tex]\( f(x) = |x - 5| \)[/tex].
2. Shift 7 units down:
- When we shift a function vertically, we subtract [tex]\( k \)[/tex] from the function where [tex]\( k \)[/tex] is the number of units we're shifting. In this case, we're shifting 7 units down, so we subtract 7 from the function.
- Therefore, [tex]\( f(x) = |x - 5| \)[/tex] becomes [tex]\( g(x) = |x - 5| - 7 \)[/tex].
Putting these steps together, the new function [tex]\( g(x) \)[/tex] after applying both transformations is:
[tex]\[ g(x) = |x - 5| - 7 \][/tex]
Therefore, the correct answer is:
D. [tex]\( g(x) = |x - 5| - 7 \)[/tex]
1. Shift 5 units to the right:
- When we shift a function horizontally, we replace [tex]\( x \)[/tex] with [tex]\( x - h \)[/tex] where [tex]\( h \)[/tex] is the number of units we're shifting. In this case, we're shifting 5 units to the right, so we replace [tex]\( x \)[/tex] with [tex]\( x - 5 \)[/tex].
- Therefore, [tex]\( f(x) = |x| \)[/tex] becomes [tex]\( f(x) = |x - 5| \)[/tex].
2. Shift 7 units down:
- When we shift a function vertically, we subtract [tex]\( k \)[/tex] from the function where [tex]\( k \)[/tex] is the number of units we're shifting. In this case, we're shifting 7 units down, so we subtract 7 from the function.
- Therefore, [tex]\( f(x) = |x - 5| \)[/tex] becomes [tex]\( g(x) = |x - 5| - 7 \)[/tex].
Putting these steps together, the new function [tex]\( g(x) \)[/tex] after applying both transformations is:
[tex]\[ g(x) = |x - 5| - 7 \][/tex]
Therefore, the correct answer is:
D. [tex]\( g(x) = |x - 5| - 7 \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.