Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we need to determine the conditional probability that the test result is positive given that the sample does not contain the bacteria.
We'll use the following steps:
1. Identify the relevant events:
- Event A: The sample does not contain bacteria.
- Event B: The test is positive.
2. Extract given data from the table:
- The number of samples that do not contain bacteria and test positive (Event A and Event B both occur): 58
- The total number of samples that do not contain bacteria (Event A): 1,930
3. Set up the formula for conditional probability:
[tex]\[ P(B|A) = \frac{P(A \cap B)}{P(A)} \][/tex]
Here, [tex]\(P(A \cap B)\)[/tex] represents the number of samples with Event A and Event B both occurring, and [tex]\(P(A)\)[/tex] represents the number of samples with Event A.
4. Substitute the values into the formula:
[tex]\[ P(B|A) = \frac{58}{1,930} \][/tex]
5. Calculate the probability:
[tex]\[ P(B|A) \approx 0.03005181347150259 \][/tex]
After performing the calculations, the probability that the test result is positive given that the sample does not contain the bacteria is approximately [tex]\(0.0301\)[/tex], which corresponds to approximately 3.01%.
Given the answer choices:
A. 0.001
B. 0.46
C. 0.00
D. 0.54
None of the given choices exactly match the calculated probability. Given this, it seems there may be an error in the provided answer choices. However, if we consider significant figures or a potential typo, the closest answer could be:
A. 0.001
But, strictly speaking, none of the provided answers exactly match the calculated probability of approximately 0.0301 (3.01%).
We'll use the following steps:
1. Identify the relevant events:
- Event A: The sample does not contain bacteria.
- Event B: The test is positive.
2. Extract given data from the table:
- The number of samples that do not contain bacteria and test positive (Event A and Event B both occur): 58
- The total number of samples that do not contain bacteria (Event A): 1,930
3. Set up the formula for conditional probability:
[tex]\[ P(B|A) = \frac{P(A \cap B)}{P(A)} \][/tex]
Here, [tex]\(P(A \cap B)\)[/tex] represents the number of samples with Event A and Event B both occurring, and [tex]\(P(A)\)[/tex] represents the number of samples with Event A.
4. Substitute the values into the formula:
[tex]\[ P(B|A) = \frac{58}{1,930} \][/tex]
5. Calculate the probability:
[tex]\[ P(B|A) \approx 0.03005181347150259 \][/tex]
After performing the calculations, the probability that the test result is positive given that the sample does not contain the bacteria is approximately [tex]\(0.0301\)[/tex], which corresponds to approximately 3.01%.
Given the answer choices:
A. 0.001
B. 0.46
C. 0.00
D. 0.54
None of the given choices exactly match the calculated probability. Given this, it seems there may be an error in the provided answer choices. However, if we consider significant figures or a potential typo, the closest answer could be:
A. 0.001
But, strictly speaking, none of the provided answers exactly match the calculated probability of approximately 0.0301 (3.01%).
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.