Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's start with the quadratic equation:
[tex]\[ x^2 - 4k\sqrt{2} x + 2k^4 - 1 = 0 \][/tex]
where [tex]\( k \)[/tex] is a positive constant, and the roots are given as [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex].
### Step 1: Relation between the roots and coefficients
Using Vieta's formulas for the quadratic equations:
1. Sum of the roots ([tex]\(\alpha + \beta\)[/tex]):
[tex]\[ \alpha + \beta = 4k\sqrt{2} \][/tex]
2. Product of the roots ([tex]\(\alpha\beta\)[/tex]):
[tex]\[ \alpha \beta = 2k^4 - 1 \][/tex]
### Step 2: Given condition on the sum of squares of the roots
We are given:
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
Using the identity [tex]\(\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta\)[/tex], we substitute the values obtained from Vieta's formulas:
[tex]\[ \alpha^2 + \beta^2 = (4k\sqrt{2})^2 - 2(\alpha\beta) \][/tex]
[tex]\[ 66 = 16k^2 \cdot 2 - 2(2k^4 - 1) \][/tex]
[tex]\[ 66 = 32k^2 - 4k^4 + 2 \][/tex]
[tex]\[ 64 = 32k^2 - 4k^4 \][/tex]
[tex]\[ 4k^4 - 32k^2 + 64 = 0 \][/tex]
### Step 3: Solve for [tex]\(k\)[/tex]
Divide the entire equation by 4:
[tex]\[ k^4 - 8k^2 + 16 = 0 \][/tex]
This can be treated as a quadratic in terms of [tex]\( k^2 \)[/tex]. Let [tex]\( y = k^2 \)[/tex]:
[tex]\[ y^2 - 8y + 16 = 0 \][/tex]
Solve the quadratic equation:
[tex]\[ y = \frac{8 \pm \sqrt{64 - 64}}{2} = \frac{8 \pm 0}{2} = 4 \][/tex]
Thus:
[tex]\[ k^2 = 4 \][/tex]
[tex]\[ k = 2 \][/tex]
(Because [tex]\( k \)[/tex] is a positive constant)
### Step 4: Finding [tex]\( \alpha^3 + \beta^3 = p\sqrt{2} \)[/tex]
We use the identity:
[tex]\[ \alpha^3 + \beta^3 = (\alpha + \beta)((\alpha^2 + \beta^2) - \alpha\beta) \][/tex]
Substitute the known values:
[tex]\[ \alpha + \beta = 4k\sqrt{2} = 4 \cdot 2 \sqrt{2} = 8\sqrt{2} \][/tex]
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
[tex]\[ \alpha\beta = 2k^4 - 1 = 2 \cdot 2^4 - 1 = 31 \][/tex]
Then:
[tex]\[ \alpha^3 + \beta^3 = (8\sqrt{2}) \left(66 - 31\right) \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 8\sqrt{2} \cdot 35 \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 280\sqrt{2} \][/tex]
Since it is given that [tex]\(\alpha^3 + \beta^3 = p\sqrt{2}\)[/tex], we compare:
[tex]\[ 280\sqrt{2} = p\sqrt{2} \][/tex]
Thus:
[tex]\[ p = 280 \][/tex]
The value of [tex]\( p \)[/tex] is:
[tex]\[ \boxed{280} \][/tex]
[tex]\[ x^2 - 4k\sqrt{2} x + 2k^4 - 1 = 0 \][/tex]
where [tex]\( k \)[/tex] is a positive constant, and the roots are given as [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex].
### Step 1: Relation between the roots and coefficients
Using Vieta's formulas for the quadratic equations:
1. Sum of the roots ([tex]\(\alpha + \beta\)[/tex]):
[tex]\[ \alpha + \beta = 4k\sqrt{2} \][/tex]
2. Product of the roots ([tex]\(\alpha\beta\)[/tex]):
[tex]\[ \alpha \beta = 2k^4 - 1 \][/tex]
### Step 2: Given condition on the sum of squares of the roots
We are given:
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
Using the identity [tex]\(\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta\)[/tex], we substitute the values obtained from Vieta's formulas:
[tex]\[ \alpha^2 + \beta^2 = (4k\sqrt{2})^2 - 2(\alpha\beta) \][/tex]
[tex]\[ 66 = 16k^2 \cdot 2 - 2(2k^4 - 1) \][/tex]
[tex]\[ 66 = 32k^2 - 4k^4 + 2 \][/tex]
[tex]\[ 64 = 32k^2 - 4k^4 \][/tex]
[tex]\[ 4k^4 - 32k^2 + 64 = 0 \][/tex]
### Step 3: Solve for [tex]\(k\)[/tex]
Divide the entire equation by 4:
[tex]\[ k^4 - 8k^2 + 16 = 0 \][/tex]
This can be treated as a quadratic in terms of [tex]\( k^2 \)[/tex]. Let [tex]\( y = k^2 \)[/tex]:
[tex]\[ y^2 - 8y + 16 = 0 \][/tex]
Solve the quadratic equation:
[tex]\[ y = \frac{8 \pm \sqrt{64 - 64}}{2} = \frac{8 \pm 0}{2} = 4 \][/tex]
Thus:
[tex]\[ k^2 = 4 \][/tex]
[tex]\[ k = 2 \][/tex]
(Because [tex]\( k \)[/tex] is a positive constant)
### Step 4: Finding [tex]\( \alpha^3 + \beta^3 = p\sqrt{2} \)[/tex]
We use the identity:
[tex]\[ \alpha^3 + \beta^3 = (\alpha + \beta)((\alpha^2 + \beta^2) - \alpha\beta) \][/tex]
Substitute the known values:
[tex]\[ \alpha + \beta = 4k\sqrt{2} = 4 \cdot 2 \sqrt{2} = 8\sqrt{2} \][/tex]
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
[tex]\[ \alpha\beta = 2k^4 - 1 = 2 \cdot 2^4 - 1 = 31 \][/tex]
Then:
[tex]\[ \alpha^3 + \beta^3 = (8\sqrt{2}) \left(66 - 31\right) \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 8\sqrt{2} \cdot 35 \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 280\sqrt{2} \][/tex]
Since it is given that [tex]\(\alpha^3 + \beta^3 = p\sqrt{2}\)[/tex], we compare:
[tex]\[ 280\sqrt{2} = p\sqrt{2} \][/tex]
Thus:
[tex]\[ p = 280 \][/tex]
The value of [tex]\( p \)[/tex] is:
[tex]\[ \boxed{280} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.