Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's start with the quadratic equation:
[tex]\[ x^2 - 4k\sqrt{2} x + 2k^4 - 1 = 0 \][/tex]
where [tex]\( k \)[/tex] is a positive constant, and the roots are given as [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex].
### Step 1: Relation between the roots and coefficients
Using Vieta's formulas for the quadratic equations:
1. Sum of the roots ([tex]\(\alpha + \beta\)[/tex]):
[tex]\[ \alpha + \beta = 4k\sqrt{2} \][/tex]
2. Product of the roots ([tex]\(\alpha\beta\)[/tex]):
[tex]\[ \alpha \beta = 2k^4 - 1 \][/tex]
### Step 2: Given condition on the sum of squares of the roots
We are given:
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
Using the identity [tex]\(\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta\)[/tex], we substitute the values obtained from Vieta's formulas:
[tex]\[ \alpha^2 + \beta^2 = (4k\sqrt{2})^2 - 2(\alpha\beta) \][/tex]
[tex]\[ 66 = 16k^2 \cdot 2 - 2(2k^4 - 1) \][/tex]
[tex]\[ 66 = 32k^2 - 4k^4 + 2 \][/tex]
[tex]\[ 64 = 32k^2 - 4k^4 \][/tex]
[tex]\[ 4k^4 - 32k^2 + 64 = 0 \][/tex]
### Step 3: Solve for [tex]\(k\)[/tex]
Divide the entire equation by 4:
[tex]\[ k^4 - 8k^2 + 16 = 0 \][/tex]
This can be treated as a quadratic in terms of [tex]\( k^2 \)[/tex]. Let [tex]\( y = k^2 \)[/tex]:
[tex]\[ y^2 - 8y + 16 = 0 \][/tex]
Solve the quadratic equation:
[tex]\[ y = \frac{8 \pm \sqrt{64 - 64}}{2} = \frac{8 \pm 0}{2} = 4 \][/tex]
Thus:
[tex]\[ k^2 = 4 \][/tex]
[tex]\[ k = 2 \][/tex]
(Because [tex]\( k \)[/tex] is a positive constant)
### Step 4: Finding [tex]\( \alpha^3 + \beta^3 = p\sqrt{2} \)[/tex]
We use the identity:
[tex]\[ \alpha^3 + \beta^3 = (\alpha + \beta)((\alpha^2 + \beta^2) - \alpha\beta) \][/tex]
Substitute the known values:
[tex]\[ \alpha + \beta = 4k\sqrt{2} = 4 \cdot 2 \sqrt{2} = 8\sqrt{2} \][/tex]
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
[tex]\[ \alpha\beta = 2k^4 - 1 = 2 \cdot 2^4 - 1 = 31 \][/tex]
Then:
[tex]\[ \alpha^3 + \beta^3 = (8\sqrt{2}) \left(66 - 31\right) \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 8\sqrt{2} \cdot 35 \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 280\sqrt{2} \][/tex]
Since it is given that [tex]\(\alpha^3 + \beta^3 = p\sqrt{2}\)[/tex], we compare:
[tex]\[ 280\sqrt{2} = p\sqrt{2} \][/tex]
Thus:
[tex]\[ p = 280 \][/tex]
The value of [tex]\( p \)[/tex] is:
[tex]\[ \boxed{280} \][/tex]
[tex]\[ x^2 - 4k\sqrt{2} x + 2k^4 - 1 = 0 \][/tex]
where [tex]\( k \)[/tex] is a positive constant, and the roots are given as [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex].
### Step 1: Relation between the roots and coefficients
Using Vieta's formulas for the quadratic equations:
1. Sum of the roots ([tex]\(\alpha + \beta\)[/tex]):
[tex]\[ \alpha + \beta = 4k\sqrt{2} \][/tex]
2. Product of the roots ([tex]\(\alpha\beta\)[/tex]):
[tex]\[ \alpha \beta = 2k^4 - 1 \][/tex]
### Step 2: Given condition on the sum of squares of the roots
We are given:
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
Using the identity [tex]\(\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta\)[/tex], we substitute the values obtained from Vieta's formulas:
[tex]\[ \alpha^2 + \beta^2 = (4k\sqrt{2})^2 - 2(\alpha\beta) \][/tex]
[tex]\[ 66 = 16k^2 \cdot 2 - 2(2k^4 - 1) \][/tex]
[tex]\[ 66 = 32k^2 - 4k^4 + 2 \][/tex]
[tex]\[ 64 = 32k^2 - 4k^4 \][/tex]
[tex]\[ 4k^4 - 32k^2 + 64 = 0 \][/tex]
### Step 3: Solve for [tex]\(k\)[/tex]
Divide the entire equation by 4:
[tex]\[ k^4 - 8k^2 + 16 = 0 \][/tex]
This can be treated as a quadratic in terms of [tex]\( k^2 \)[/tex]. Let [tex]\( y = k^2 \)[/tex]:
[tex]\[ y^2 - 8y + 16 = 0 \][/tex]
Solve the quadratic equation:
[tex]\[ y = \frac{8 \pm \sqrt{64 - 64}}{2} = \frac{8 \pm 0}{2} = 4 \][/tex]
Thus:
[tex]\[ k^2 = 4 \][/tex]
[tex]\[ k = 2 \][/tex]
(Because [tex]\( k \)[/tex] is a positive constant)
### Step 4: Finding [tex]\( \alpha^3 + \beta^3 = p\sqrt{2} \)[/tex]
We use the identity:
[tex]\[ \alpha^3 + \beta^3 = (\alpha + \beta)((\alpha^2 + \beta^2) - \alpha\beta) \][/tex]
Substitute the known values:
[tex]\[ \alpha + \beta = 4k\sqrt{2} = 4 \cdot 2 \sqrt{2} = 8\sqrt{2} \][/tex]
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
[tex]\[ \alpha\beta = 2k^4 - 1 = 2 \cdot 2^4 - 1 = 31 \][/tex]
Then:
[tex]\[ \alpha^3 + \beta^3 = (8\sqrt{2}) \left(66 - 31\right) \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 8\sqrt{2} \cdot 35 \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 280\sqrt{2} \][/tex]
Since it is given that [tex]\(\alpha^3 + \beta^3 = p\sqrt{2}\)[/tex], we compare:
[tex]\[ 280\sqrt{2} = p\sqrt{2} \][/tex]
Thus:
[tex]\[ p = 280 \][/tex]
The value of [tex]\( p \)[/tex] is:
[tex]\[ \boxed{280} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.