Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the value of the fourth term in a geometric sequence where the first term [tex]\( a_1 = 15 \)[/tex] and the common ratio [tex]\( r = \frac{1}{3} \)[/tex], we can use the formula for the [tex]\( n \)[/tex]-th term of a geometric sequence:
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
Here, we need to find the fourth term [tex]\( a_4 \)[/tex]. Setting [tex]\( n = 4 \)[/tex], we have:
[tex]\[ a_4 = a_1 \cdot r^{4-1} \][/tex]
Substitute the given values into the formula:
[tex]\[ a_4 = 15 \cdot \left( \frac{1}{3} \right)^{3} \][/tex]
First, we calculate [tex]\( \left( \frac{1}{3} \right)^3 \)[/tex]:
[tex]\[ \left( \frac{1}{3} \right)^3 = \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{27} \][/tex]
Now, multiply this result by the first term [tex]\( a_1 \)[/tex]:
[tex]\[ a_4 = 15 \cdot \frac{1}{27} \][/tex]
To multiply, we multiply the numerator by 15:
[tex]\[ a_4 = \frac{15}{27} \][/tex]
Simplify the fraction by dividing the numerator and the denominator by their greatest common divisor, which is 3:
[tex]\[ \frac{15 \div 3}{27 \div 3} = \frac{5}{9} \][/tex]
Thus, the value of the fourth term in the geometric sequence is:
[tex]\[ \boxed{\frac{5}{9}} \][/tex]
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
Here, we need to find the fourth term [tex]\( a_4 \)[/tex]. Setting [tex]\( n = 4 \)[/tex], we have:
[tex]\[ a_4 = a_1 \cdot r^{4-1} \][/tex]
Substitute the given values into the formula:
[tex]\[ a_4 = 15 \cdot \left( \frac{1}{3} \right)^{3} \][/tex]
First, we calculate [tex]\( \left( \frac{1}{3} \right)^3 \)[/tex]:
[tex]\[ \left( \frac{1}{3} \right)^3 = \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{27} \][/tex]
Now, multiply this result by the first term [tex]\( a_1 \)[/tex]:
[tex]\[ a_4 = 15 \cdot \frac{1}{27} \][/tex]
To multiply, we multiply the numerator by 15:
[tex]\[ a_4 = \frac{15}{27} \][/tex]
Simplify the fraction by dividing the numerator and the denominator by their greatest common divisor, which is 3:
[tex]\[ \frac{15 \div 3}{27 \div 3} = \frac{5}{9} \][/tex]
Thus, the value of the fourth term in the geometric sequence is:
[tex]\[ \boxed{\frac{5}{9}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.