Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 3 & 6 & 9 & 12 & 15 & 18 \\
\hline
[tex]$y$[/tex] & -41 & -22 & -4 & 14 & 32 & 51 \\
\hline
\end{tabular}


Sagot :

Certainly! Let's calculate the equation of the best fit line for the given data points [tex]\((x, y)\)[/tex].

Given:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & 3 & 6 & 9 & 12 & 15 & 18 \\ \hline y & -41 & -22 & -4 & 14 & 32 & 51 \\ \hline \end{array} \][/tex]

We want to find the equation of the line [tex]\(y = mx + b\)[/tex].

1. Calculate the necessary sums:

- Sum of [tex]\(x\)[/tex]-values:
[tex]\[ \sum{x} = 3 + 6 + 9 + 12 + 15 + 18 = 63 \][/tex]

- Sum of [tex]\(y\)[/tex]-values:
[tex]\[ \sum{y} = -41 + (-22) + (-4) + 14 + 32 + 51 = 30 \][/tex]

- Sum of product of corresponding [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values:
[tex]\[ \sum{xy} = (3 \cdot -41) + (6 \cdot -22) + (9 \cdot -4) + (12 \cdot 14) + (15 \cdot 32) + (18 \cdot 51) = 1275 \][/tex]

- Sum of [tex]\(x\)[/tex]-values squared:
[tex]\[ \sum{x^2} = 3^2 + 6^2 + 9^2 + 12^2 + 15^2 + 18^2 = 819 \][/tex]

Given [tex]\(n = 6\)[/tex] data points.

2. Calculate the slope [tex]\(m\)[/tex] of the best fit line:

The formula for the slope [tex]\(m\)[/tex] is:
[tex]\[ m = \frac{n \sum{xy} - (\sum{x})(\sum{y})}{n \sum{x^2} - (\sum{x})^2} \][/tex]

Substitute the calculated values:
[tex]\[ m = \frac{6 \cdot 1275 - 63 \cdot 30}{6 \cdot 819 - 63^2} \][/tex]

- Numerator:
[tex]\[ 6 \cdot 1275 - 63 \cdot 30 = 7650 - 1890 = 5760 \][/tex]

- Denominator:
[tex]\[ 6 \cdot 819 - 63^2 = 4914 - 3969 = 945 \][/tex]

[tex]\[ m = \frac{5760}{945} = 6.095238095238095 \][/tex]

3. Calculate the y-intercept [tex]\(b\)[/tex] of the best fit line:

The formula for the y-intercept [tex]\(b\)[/tex] is:
[tex]\[ b = \frac{\sum{y} - m \sum{x}}{n} \][/tex]

Substitute the values:
[tex]\[ b = \frac{30 - (6.095238095238095 \cdot 63)}{6} \][/tex]

- Calculate [tex]\(m \sum{x}\)[/tex]:
[tex]\[ m \sum{x} = 6.095238095238095 \cdot 63 = 384 \][/tex]

- Calculate [tex]\( \sum{y} - m \sum{x} \)[/tex]:
[tex]\[ 30 - 384 = -354 \][/tex]

[tex]\[ b = \frac{-354}{6} = -59 \][/tex]

4. Final equation of the best fit line:

Therefore, the equation of the best fit line for the given data is:
[tex]\[ y = 6.095238095238095x - 59 \][/tex]

This step-by-step solution provides the detailed calculations leading to the slope [tex]\(m = 6.095238095238095\)[/tex] and the y-intercept [tex]\(b = -59\)[/tex].