Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To simplify the given logarithmic expressions, we need to use the fundamental property of logarithms: [tex]\(\ln(e^a) = a\)[/tex].
1. Simplifying [tex]\(\ln(e^3)\)[/tex]:
- The expression [tex]\(\ln(e^3)\)[/tex] involves the natural logarithm [tex]\(\ln\)[/tex] of [tex]\(e\)[/tex] raised to the power of 3.
- According to the property of logarithms: [tex]\(\ln(e^a) = a\)[/tex], we can simplify [tex]\(\ln(e^3)\)[/tex] directly to the exponent, which is 3.
- Therefore, [tex]\(\ln(e^3) = 3\)[/tex].
So, [tex]\[\ln(e^3) = 3.\][/tex]
2. Simplifying [tex]\(\ln(e^{2y})\)[/tex]:
- The expression [tex]\(\ln(e^{2y})\)[/tex] involves the natural logarithm [tex]\(\ln\)[/tex] of [tex]\(e\)[/tex] raised to the power of [tex]\(2y\)[/tex].
- Using the same property of logarithms: [tex]\(\ln(e^a) = a\)[/tex], we can simplify [tex]\(\ln(e^{2y})\)[/tex] directly to the exponent, which is [tex]\(2y\)[/tex].
- Therefore, [tex]\(\ln(e^{2y}) = 2y\)[/tex].
So, [tex]\[\ln(e^{2y}) = 2y.\][/tex]
To summarize:
[tex]\[ \ln(e^3) = 3 \][/tex]
[tex]\[ \ln(e^{2y}) = 2y \][/tex]
1. Simplifying [tex]\(\ln(e^3)\)[/tex]:
- The expression [tex]\(\ln(e^3)\)[/tex] involves the natural logarithm [tex]\(\ln\)[/tex] of [tex]\(e\)[/tex] raised to the power of 3.
- According to the property of logarithms: [tex]\(\ln(e^a) = a\)[/tex], we can simplify [tex]\(\ln(e^3)\)[/tex] directly to the exponent, which is 3.
- Therefore, [tex]\(\ln(e^3) = 3\)[/tex].
So, [tex]\[\ln(e^3) = 3.\][/tex]
2. Simplifying [tex]\(\ln(e^{2y})\)[/tex]:
- The expression [tex]\(\ln(e^{2y})\)[/tex] involves the natural logarithm [tex]\(\ln\)[/tex] of [tex]\(e\)[/tex] raised to the power of [tex]\(2y\)[/tex].
- Using the same property of logarithms: [tex]\(\ln(e^a) = a\)[/tex], we can simplify [tex]\(\ln(e^{2y})\)[/tex] directly to the exponent, which is [tex]\(2y\)[/tex].
- Therefore, [tex]\(\ln(e^{2y}) = 2y\)[/tex].
So, [tex]\[\ln(e^{2y}) = 2y.\][/tex]
To summarize:
[tex]\[ \ln(e^3) = 3 \][/tex]
[tex]\[ \ln(e^{2y}) = 2y \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.