Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's solve each part step-by-step.
### 2.1 Simplify [tex]\(3 j^{12} + 2 j^{23}\)[/tex] to rectangular form
First, recall that [tex]\( j \)[/tex] is the imaginary unit, defined as [tex]\( j = \sqrt{-1} \)[/tex].
Here's a useful cycle for powers of [tex]\( j \)[/tex]:
- [tex]\( j^1 = j \)[/tex]
- [tex]\( j^2 = -1 \)[/tex]
- [tex]\( j^3 = -j \)[/tex]
- [tex]\( j^4 = 1 \)[/tex]
- This cycle repeats every 4, so [tex]\( j^n = j^{(n \mod 4)} \)[/tex].
Now let's simplify:
- [tex]\( j^{12} \)[/tex]: [tex]\( 12 \mod 4 = 0 \)[/tex] (remainder is 0), so [tex]\( j^{12} = j^0 = 1 \)[/tex].
- [tex]\( j^{23} \)[/tex]: [tex]\( 23 \mod 4 = 3 \)[/tex] (remainder is 3), so [tex]\( j^{23} = j^3 = -j \)[/tex].
Substitute back into the expression:
[tex]\[ 3 j^{12} + 2 j^{23} = 3 \cdot 1 + 2 \cdot (-j) = 3 - 2j \][/tex]
So, the rectangular form of [tex]\( 3 j^{12} + 2 j^{23} \)[/tex] is:
[tex]\[ \boxed{3 - 2j} \][/tex]
### 2.2 Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex] if [tex]\( \frac{a}{b} + j(a - b) = 7 + 2j \)[/tex]
Equate the real and imaginary parts on both sides of the equation:
[tex]\[ \text{Real part: } \frac{a}{b} = 7 \][/tex]
[tex]\[ \text{Imaginary part: } a - b = 2 \][/tex]
From the real part:
[tex]\[ \frac{a}{b} = 7 \implies a = 7b \][/tex]
Substitute [tex]\(a = 7b\)[/tex] into the imaginary part:
[tex]\[ 7b - b = 2 \implies 6b = 2 \implies b = \frac{2}{6} = \frac{1}{3} \][/tex]
Now substitute [tex]\(b = \frac{1}{3}\)[/tex] back to find [tex]\(a\)[/tex]:
[tex]\[ a = 7b = 7 \times \frac{1}{3} = \frac{7}{3} \][/tex]
So, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ \boxed{a = \frac{7}{3}, \quad b = \frac{1}{3}} \][/tex]
### 2.3 Convert [tex]\(12 - 5j\)[/tex] to polar form
To convert a complex number [tex]\(z = a + bj\)[/tex] to polar form, use the formula:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
[tex]\[ \theta = \arctan\left(\frac{b}{a}\right) \text{ (in radians)} \][/tex]
For [tex]\(z = 12 - 5j\)[/tex]:
- [tex]\(a = 12\)[/tex]
- [tex]\(b = -5\)[/tex]
Calculate [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{12^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \][/tex]
Calculate [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{-5}{12}\right) \][/tex]
[tex]\[ \theta \approx \arctan\left(-0.4167\right) \][/tex]
[tex]\[ \theta \approx -0.3927 \text{ radians} \][/tex]
Since we want [tex]\( \theta \)[/tex] to be positive:
[tex]\[ \theta = 2\pi - 0.3927 \approx 5.8905 \text{ radians} \][/tex]
So the polar form of [tex]\(12 - 5j\)[/tex] is:
[tex]\[ \boxed{(13, 5.8905)} \][/tex]
### 2.4 Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's rule
Given the system of linear equations:
[tex]\[ 5x + 2y = -19 \][/tex]
[tex]\[ 3x + 4y = -17 \][/tex]
Cramer's rule states that for a system [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)} \][/tex]
Where [tex]\( A \)[/tex] is the coefficient matrix:
[tex]\[ A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix} \][/tex]
The determinants are calculated as follows:
1. [tex]\( \det(A) = (5 \cdot 4) - (2 \cdot 3) = 20 - 6 = 14 \)[/tex]
2. [tex]\( \det(A_x) \)[/tex] replaces the first column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -19 & 2 \\ -17 & 4 \end{pmatrix} \][/tex]
[tex]\[ \det(A_x) = (-19 \cdot 4) - (2 \cdot -17) = -76 + 34 = -42 \][/tex]
3. [tex]\( \det(A_y) \)[/tex] replaces the second column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 5 & -19 \\ 3 & -17 \end{pmatrix} \][/tex]
[tex]\[ \det(A_y) = (5 \cdot -17) - (3 \cdot -19) = -85 + 57 = -28 \][/tex]
Now compute [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-42}{14} = -3 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-28}{14} = -2 \][/tex]
So, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are:
[tex]\[ \boxed{x = -3, \quad y = -2} \][/tex]
### 2.1 Simplify [tex]\(3 j^{12} + 2 j^{23}\)[/tex] to rectangular form
First, recall that [tex]\( j \)[/tex] is the imaginary unit, defined as [tex]\( j = \sqrt{-1} \)[/tex].
Here's a useful cycle for powers of [tex]\( j \)[/tex]:
- [tex]\( j^1 = j \)[/tex]
- [tex]\( j^2 = -1 \)[/tex]
- [tex]\( j^3 = -j \)[/tex]
- [tex]\( j^4 = 1 \)[/tex]
- This cycle repeats every 4, so [tex]\( j^n = j^{(n \mod 4)} \)[/tex].
Now let's simplify:
- [tex]\( j^{12} \)[/tex]: [tex]\( 12 \mod 4 = 0 \)[/tex] (remainder is 0), so [tex]\( j^{12} = j^0 = 1 \)[/tex].
- [tex]\( j^{23} \)[/tex]: [tex]\( 23 \mod 4 = 3 \)[/tex] (remainder is 3), so [tex]\( j^{23} = j^3 = -j \)[/tex].
Substitute back into the expression:
[tex]\[ 3 j^{12} + 2 j^{23} = 3 \cdot 1 + 2 \cdot (-j) = 3 - 2j \][/tex]
So, the rectangular form of [tex]\( 3 j^{12} + 2 j^{23} \)[/tex] is:
[tex]\[ \boxed{3 - 2j} \][/tex]
### 2.2 Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex] if [tex]\( \frac{a}{b} + j(a - b) = 7 + 2j \)[/tex]
Equate the real and imaginary parts on both sides of the equation:
[tex]\[ \text{Real part: } \frac{a}{b} = 7 \][/tex]
[tex]\[ \text{Imaginary part: } a - b = 2 \][/tex]
From the real part:
[tex]\[ \frac{a}{b} = 7 \implies a = 7b \][/tex]
Substitute [tex]\(a = 7b\)[/tex] into the imaginary part:
[tex]\[ 7b - b = 2 \implies 6b = 2 \implies b = \frac{2}{6} = \frac{1}{3} \][/tex]
Now substitute [tex]\(b = \frac{1}{3}\)[/tex] back to find [tex]\(a\)[/tex]:
[tex]\[ a = 7b = 7 \times \frac{1}{3} = \frac{7}{3} \][/tex]
So, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ \boxed{a = \frac{7}{3}, \quad b = \frac{1}{3}} \][/tex]
### 2.3 Convert [tex]\(12 - 5j\)[/tex] to polar form
To convert a complex number [tex]\(z = a + bj\)[/tex] to polar form, use the formula:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
[tex]\[ \theta = \arctan\left(\frac{b}{a}\right) \text{ (in radians)} \][/tex]
For [tex]\(z = 12 - 5j\)[/tex]:
- [tex]\(a = 12\)[/tex]
- [tex]\(b = -5\)[/tex]
Calculate [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{12^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \][/tex]
Calculate [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{-5}{12}\right) \][/tex]
[tex]\[ \theta \approx \arctan\left(-0.4167\right) \][/tex]
[tex]\[ \theta \approx -0.3927 \text{ radians} \][/tex]
Since we want [tex]\( \theta \)[/tex] to be positive:
[tex]\[ \theta = 2\pi - 0.3927 \approx 5.8905 \text{ radians} \][/tex]
So the polar form of [tex]\(12 - 5j\)[/tex] is:
[tex]\[ \boxed{(13, 5.8905)} \][/tex]
### 2.4 Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's rule
Given the system of linear equations:
[tex]\[ 5x + 2y = -19 \][/tex]
[tex]\[ 3x + 4y = -17 \][/tex]
Cramer's rule states that for a system [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)} \][/tex]
Where [tex]\( A \)[/tex] is the coefficient matrix:
[tex]\[ A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix} \][/tex]
The determinants are calculated as follows:
1. [tex]\( \det(A) = (5 \cdot 4) - (2 \cdot 3) = 20 - 6 = 14 \)[/tex]
2. [tex]\( \det(A_x) \)[/tex] replaces the first column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -19 & 2 \\ -17 & 4 \end{pmatrix} \][/tex]
[tex]\[ \det(A_x) = (-19 \cdot 4) - (2 \cdot -17) = -76 + 34 = -42 \][/tex]
3. [tex]\( \det(A_y) \)[/tex] replaces the second column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 5 & -19 \\ 3 & -17 \end{pmatrix} \][/tex]
[tex]\[ \det(A_y) = (5 \cdot -17) - (3 \cdot -19) = -85 + 57 = -28 \][/tex]
Now compute [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-42}{14} = -3 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-28}{14} = -2 \][/tex]
So, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are:
[tex]\[ \boxed{x = -3, \quad y = -2} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.