Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve each part step-by-step.
### 2.1 Simplify [tex]\(3 j^{12} + 2 j^{23}\)[/tex] to rectangular form
First, recall that [tex]\( j \)[/tex] is the imaginary unit, defined as [tex]\( j = \sqrt{-1} \)[/tex].
Here's a useful cycle for powers of [tex]\( j \)[/tex]:
- [tex]\( j^1 = j \)[/tex]
- [tex]\( j^2 = -1 \)[/tex]
- [tex]\( j^3 = -j \)[/tex]
- [tex]\( j^4 = 1 \)[/tex]
- This cycle repeats every 4, so [tex]\( j^n = j^{(n \mod 4)} \)[/tex].
Now let's simplify:
- [tex]\( j^{12} \)[/tex]: [tex]\( 12 \mod 4 = 0 \)[/tex] (remainder is 0), so [tex]\( j^{12} = j^0 = 1 \)[/tex].
- [tex]\( j^{23} \)[/tex]: [tex]\( 23 \mod 4 = 3 \)[/tex] (remainder is 3), so [tex]\( j^{23} = j^3 = -j \)[/tex].
Substitute back into the expression:
[tex]\[ 3 j^{12} + 2 j^{23} = 3 \cdot 1 + 2 \cdot (-j) = 3 - 2j \][/tex]
So, the rectangular form of [tex]\( 3 j^{12} + 2 j^{23} \)[/tex] is:
[tex]\[ \boxed{3 - 2j} \][/tex]
### 2.2 Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex] if [tex]\( \frac{a}{b} + j(a - b) = 7 + 2j \)[/tex]
Equate the real and imaginary parts on both sides of the equation:
[tex]\[ \text{Real part: } \frac{a}{b} = 7 \][/tex]
[tex]\[ \text{Imaginary part: } a - b = 2 \][/tex]
From the real part:
[tex]\[ \frac{a}{b} = 7 \implies a = 7b \][/tex]
Substitute [tex]\(a = 7b\)[/tex] into the imaginary part:
[tex]\[ 7b - b = 2 \implies 6b = 2 \implies b = \frac{2}{6} = \frac{1}{3} \][/tex]
Now substitute [tex]\(b = \frac{1}{3}\)[/tex] back to find [tex]\(a\)[/tex]:
[tex]\[ a = 7b = 7 \times \frac{1}{3} = \frac{7}{3} \][/tex]
So, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ \boxed{a = \frac{7}{3}, \quad b = \frac{1}{3}} \][/tex]
### 2.3 Convert [tex]\(12 - 5j\)[/tex] to polar form
To convert a complex number [tex]\(z = a + bj\)[/tex] to polar form, use the formula:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
[tex]\[ \theta = \arctan\left(\frac{b}{a}\right) \text{ (in radians)} \][/tex]
For [tex]\(z = 12 - 5j\)[/tex]:
- [tex]\(a = 12\)[/tex]
- [tex]\(b = -5\)[/tex]
Calculate [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{12^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \][/tex]
Calculate [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{-5}{12}\right) \][/tex]
[tex]\[ \theta \approx \arctan\left(-0.4167\right) \][/tex]
[tex]\[ \theta \approx -0.3927 \text{ radians} \][/tex]
Since we want [tex]\( \theta \)[/tex] to be positive:
[tex]\[ \theta = 2\pi - 0.3927 \approx 5.8905 \text{ radians} \][/tex]
So the polar form of [tex]\(12 - 5j\)[/tex] is:
[tex]\[ \boxed{(13, 5.8905)} \][/tex]
### 2.4 Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's rule
Given the system of linear equations:
[tex]\[ 5x + 2y = -19 \][/tex]
[tex]\[ 3x + 4y = -17 \][/tex]
Cramer's rule states that for a system [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)} \][/tex]
Where [tex]\( A \)[/tex] is the coefficient matrix:
[tex]\[ A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix} \][/tex]
The determinants are calculated as follows:
1. [tex]\( \det(A) = (5 \cdot 4) - (2 \cdot 3) = 20 - 6 = 14 \)[/tex]
2. [tex]\( \det(A_x) \)[/tex] replaces the first column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -19 & 2 \\ -17 & 4 \end{pmatrix} \][/tex]
[tex]\[ \det(A_x) = (-19 \cdot 4) - (2 \cdot -17) = -76 + 34 = -42 \][/tex]
3. [tex]\( \det(A_y) \)[/tex] replaces the second column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 5 & -19 \\ 3 & -17 \end{pmatrix} \][/tex]
[tex]\[ \det(A_y) = (5 \cdot -17) - (3 \cdot -19) = -85 + 57 = -28 \][/tex]
Now compute [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-42}{14} = -3 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-28}{14} = -2 \][/tex]
So, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are:
[tex]\[ \boxed{x = -3, \quad y = -2} \][/tex]
### 2.1 Simplify [tex]\(3 j^{12} + 2 j^{23}\)[/tex] to rectangular form
First, recall that [tex]\( j \)[/tex] is the imaginary unit, defined as [tex]\( j = \sqrt{-1} \)[/tex].
Here's a useful cycle for powers of [tex]\( j \)[/tex]:
- [tex]\( j^1 = j \)[/tex]
- [tex]\( j^2 = -1 \)[/tex]
- [tex]\( j^3 = -j \)[/tex]
- [tex]\( j^4 = 1 \)[/tex]
- This cycle repeats every 4, so [tex]\( j^n = j^{(n \mod 4)} \)[/tex].
Now let's simplify:
- [tex]\( j^{12} \)[/tex]: [tex]\( 12 \mod 4 = 0 \)[/tex] (remainder is 0), so [tex]\( j^{12} = j^0 = 1 \)[/tex].
- [tex]\( j^{23} \)[/tex]: [tex]\( 23 \mod 4 = 3 \)[/tex] (remainder is 3), so [tex]\( j^{23} = j^3 = -j \)[/tex].
Substitute back into the expression:
[tex]\[ 3 j^{12} + 2 j^{23} = 3 \cdot 1 + 2 \cdot (-j) = 3 - 2j \][/tex]
So, the rectangular form of [tex]\( 3 j^{12} + 2 j^{23} \)[/tex] is:
[tex]\[ \boxed{3 - 2j} \][/tex]
### 2.2 Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex] if [tex]\( \frac{a}{b} + j(a - b) = 7 + 2j \)[/tex]
Equate the real and imaginary parts on both sides of the equation:
[tex]\[ \text{Real part: } \frac{a}{b} = 7 \][/tex]
[tex]\[ \text{Imaginary part: } a - b = 2 \][/tex]
From the real part:
[tex]\[ \frac{a}{b} = 7 \implies a = 7b \][/tex]
Substitute [tex]\(a = 7b\)[/tex] into the imaginary part:
[tex]\[ 7b - b = 2 \implies 6b = 2 \implies b = \frac{2}{6} = \frac{1}{3} \][/tex]
Now substitute [tex]\(b = \frac{1}{3}\)[/tex] back to find [tex]\(a\)[/tex]:
[tex]\[ a = 7b = 7 \times \frac{1}{3} = \frac{7}{3} \][/tex]
So, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ \boxed{a = \frac{7}{3}, \quad b = \frac{1}{3}} \][/tex]
### 2.3 Convert [tex]\(12 - 5j\)[/tex] to polar form
To convert a complex number [tex]\(z = a + bj\)[/tex] to polar form, use the formula:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
[tex]\[ \theta = \arctan\left(\frac{b}{a}\right) \text{ (in radians)} \][/tex]
For [tex]\(z = 12 - 5j\)[/tex]:
- [tex]\(a = 12\)[/tex]
- [tex]\(b = -5\)[/tex]
Calculate [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{12^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \][/tex]
Calculate [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{-5}{12}\right) \][/tex]
[tex]\[ \theta \approx \arctan\left(-0.4167\right) \][/tex]
[tex]\[ \theta \approx -0.3927 \text{ radians} \][/tex]
Since we want [tex]\( \theta \)[/tex] to be positive:
[tex]\[ \theta = 2\pi - 0.3927 \approx 5.8905 \text{ radians} \][/tex]
So the polar form of [tex]\(12 - 5j\)[/tex] is:
[tex]\[ \boxed{(13, 5.8905)} \][/tex]
### 2.4 Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's rule
Given the system of linear equations:
[tex]\[ 5x + 2y = -19 \][/tex]
[tex]\[ 3x + 4y = -17 \][/tex]
Cramer's rule states that for a system [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)} \][/tex]
Where [tex]\( A \)[/tex] is the coefficient matrix:
[tex]\[ A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix} \][/tex]
The determinants are calculated as follows:
1. [tex]\( \det(A) = (5 \cdot 4) - (2 \cdot 3) = 20 - 6 = 14 \)[/tex]
2. [tex]\( \det(A_x) \)[/tex] replaces the first column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -19 & 2 \\ -17 & 4 \end{pmatrix} \][/tex]
[tex]\[ \det(A_x) = (-19 \cdot 4) - (2 \cdot -17) = -76 + 34 = -42 \][/tex]
3. [tex]\( \det(A_y) \)[/tex] replaces the second column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 5 & -19 \\ 3 & -17 \end{pmatrix} \][/tex]
[tex]\[ \det(A_y) = (5 \cdot -17) - (3 \cdot -19) = -85 + 57 = -28 \][/tex]
Now compute [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-42}{14} = -3 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-28}{14} = -2 \][/tex]
So, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are:
[tex]\[ \boxed{x = -3, \quad y = -2} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.