Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's complete the missing parts of the paragraph proof step-by-step for proving the Polygon Interior Angle Sum Theorem.
We are given an [tex]$n$[/tex]-gon, which has [tex]$n$[/tex] sides and [tex]$n$[/tex] vertices. If we choose one of the vertices, we can draw [tex]$n-3$[/tex] diagonals. These diagonals form [tex]$n-2$[/tex] triangles. The sum of the interior angle measures of a triangle is [tex]$180$[/tex] degrees. [tex]$n-2$[/tex] triangles would have an interior angle measure sum of [tex]$180(n-2)$[/tex] degrees. Therefore, the sum of the measures of the interior angles of an [tex]$n$[/tex]-gon is [tex]$180(n-2)^{\circ}$[/tex].
So, the complete proof is:
We are given an [tex]$n$[/tex]-gon, which has [tex]$n$[/tex] sides and [tex]$n$[/tex] vertices. If we choose one of the vertices, we can draw [tex]$n-3$[/tex] diagonals. These diagonals form [tex]$n-2$[/tex] triangles. The sum of the interior angle measures of a triangle is [tex]$180$[/tex] degrees. [tex]$n-2$[/tex] triangles would have an interior angle measure sum of [tex]$180(n-2)$[/tex] degrees. Therefore, the sum of the measures of the interior angles of an [tex]$n$[/tex]-gon is [tex]$180(n-2)^{\circ}$[/tex].
We are given an [tex]$n$[/tex]-gon, which has [tex]$n$[/tex] sides and [tex]$n$[/tex] vertices. If we choose one of the vertices, we can draw [tex]$n-3$[/tex] diagonals. These diagonals form [tex]$n-2$[/tex] triangles. The sum of the interior angle measures of a triangle is [tex]$180$[/tex] degrees. [tex]$n-2$[/tex] triangles would have an interior angle measure sum of [tex]$180(n-2)$[/tex] degrees. Therefore, the sum of the measures of the interior angles of an [tex]$n$[/tex]-gon is [tex]$180(n-2)^{\circ}$[/tex].
So, the complete proof is:
We are given an [tex]$n$[/tex]-gon, which has [tex]$n$[/tex] sides and [tex]$n$[/tex] vertices. If we choose one of the vertices, we can draw [tex]$n-3$[/tex] diagonals. These diagonals form [tex]$n-2$[/tex] triangles. The sum of the interior angle measures of a triangle is [tex]$180$[/tex] degrees. [tex]$n-2$[/tex] triangles would have an interior angle measure sum of [tex]$180(n-2)$[/tex] degrees. Therefore, the sum of the measures of the interior angles of an [tex]$n$[/tex]-gon is [tex]$180(n-2)^{\circ}$[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.