Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's complete the missing parts of the paragraph proof step-by-step for proving the Polygon Interior Angle Sum Theorem.
We are given an [tex]$n$[/tex]-gon, which has [tex]$n$[/tex] sides and [tex]$n$[/tex] vertices. If we choose one of the vertices, we can draw [tex]$n-3$[/tex] diagonals. These diagonals form [tex]$n-2$[/tex] triangles. The sum of the interior angle measures of a triangle is [tex]$180$[/tex] degrees. [tex]$n-2$[/tex] triangles would have an interior angle measure sum of [tex]$180(n-2)$[/tex] degrees. Therefore, the sum of the measures of the interior angles of an [tex]$n$[/tex]-gon is [tex]$180(n-2)^{\circ}$[/tex].
So, the complete proof is:
We are given an [tex]$n$[/tex]-gon, which has [tex]$n$[/tex] sides and [tex]$n$[/tex] vertices. If we choose one of the vertices, we can draw [tex]$n-3$[/tex] diagonals. These diagonals form [tex]$n-2$[/tex] triangles. The sum of the interior angle measures of a triangle is [tex]$180$[/tex] degrees. [tex]$n-2$[/tex] triangles would have an interior angle measure sum of [tex]$180(n-2)$[/tex] degrees. Therefore, the sum of the measures of the interior angles of an [tex]$n$[/tex]-gon is [tex]$180(n-2)^{\circ}$[/tex].
We are given an [tex]$n$[/tex]-gon, which has [tex]$n$[/tex] sides and [tex]$n$[/tex] vertices. If we choose one of the vertices, we can draw [tex]$n-3$[/tex] diagonals. These diagonals form [tex]$n-2$[/tex] triangles. The sum of the interior angle measures of a triangle is [tex]$180$[/tex] degrees. [tex]$n-2$[/tex] triangles would have an interior angle measure sum of [tex]$180(n-2)$[/tex] degrees. Therefore, the sum of the measures of the interior angles of an [tex]$n$[/tex]-gon is [tex]$180(n-2)^{\circ}$[/tex].
So, the complete proof is:
We are given an [tex]$n$[/tex]-gon, which has [tex]$n$[/tex] sides and [tex]$n$[/tex] vertices. If we choose one of the vertices, we can draw [tex]$n-3$[/tex] diagonals. These diagonals form [tex]$n-2$[/tex] triangles. The sum of the interior angle measures of a triangle is [tex]$180$[/tex] degrees. [tex]$n-2$[/tex] triangles would have an interior angle measure sum of [tex]$180(n-2)$[/tex] degrees. Therefore, the sum of the measures of the interior angles of an [tex]$n$[/tex]-gon is [tex]$180(n-2)^{\circ}$[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.