Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To prove that the formula [tex]\( s = \frac{u+v}{2} \times t \)[/tex] is correct, let's start from fundamental principles of motion under uniform acceleration.
1. Given:
- [tex]\( u \)[/tex] is the initial velocity.
- [tex]\( v \)[/tex] is the final velocity.
- [tex]\( t \)[/tex] is the time taken.
- [tex]\( s \)[/tex] is the distance traveled.
2. Distance formula under uniform acceleration:
The uniformly accelerated motion can be described by the equation:
[tex]\[ s = ut + \frac{1}{2}at^2 \][/tex]
Here, [tex]\( a \)[/tex] is the acceleration.
3. Final velocity relation:
The final velocity [tex]\( v \)[/tex] can be expressed in terms of the initial velocity and acceleration:
[tex]\[ v = u + at \][/tex]
From this equation, we can solve for acceleration [tex]\( a \)[/tex]:
[tex]\[ a = \frac{v - u}{t} \][/tex]
4. Substitute [tex]\( a \)[/tex] in the distance formula:
Now, substitute [tex]\( a = \frac{v - u}{t} \)[/tex] into the distance formula [tex]\( s = ut + \frac{1}{2}at^2 \)[/tex]:
[tex]\[ s = ut + \frac{1}{2} \left(\frac{v - u}{t}\right) t^2 \][/tex]
5. Simplify the equation:
Simplify the expression:
[tex]\[ s = ut + \frac{1}{2} (v - u) t \][/tex]
Distribute the [tex]\( t \)[/tex] in the second term:
[tex]\[ s = ut + \frac{1}{2} v t - \frac{1}{2} u t \][/tex]
Combine the like terms:
[tex]\[ s = ut - \frac{1}{2} u t + \frac{1}{2} v t \][/tex]
[tex]\[ s = \frac{1}{2} u t + \frac{1}{2} v t \][/tex]
Factor out [tex]\( t/2 \)[/tex]:
[tex]\[ s = \frac{t}{2} (u + v) \][/tex]
6. Rearrange the equation:
Finally, express this in a more familiar form:
[tex]\[ s = \frac{u + v}{2} \times t \][/tex]
Thus, we have shown that the formula [tex]\( s = \frac{u+v}{2} \times t \)[/tex] is correct. This completes the proof.
1. Given:
- [tex]\( u \)[/tex] is the initial velocity.
- [tex]\( v \)[/tex] is the final velocity.
- [tex]\( t \)[/tex] is the time taken.
- [tex]\( s \)[/tex] is the distance traveled.
2. Distance formula under uniform acceleration:
The uniformly accelerated motion can be described by the equation:
[tex]\[ s = ut + \frac{1}{2}at^2 \][/tex]
Here, [tex]\( a \)[/tex] is the acceleration.
3. Final velocity relation:
The final velocity [tex]\( v \)[/tex] can be expressed in terms of the initial velocity and acceleration:
[tex]\[ v = u + at \][/tex]
From this equation, we can solve for acceleration [tex]\( a \)[/tex]:
[tex]\[ a = \frac{v - u}{t} \][/tex]
4. Substitute [tex]\( a \)[/tex] in the distance formula:
Now, substitute [tex]\( a = \frac{v - u}{t} \)[/tex] into the distance formula [tex]\( s = ut + \frac{1}{2}at^2 \)[/tex]:
[tex]\[ s = ut + \frac{1}{2} \left(\frac{v - u}{t}\right) t^2 \][/tex]
5. Simplify the equation:
Simplify the expression:
[tex]\[ s = ut + \frac{1}{2} (v - u) t \][/tex]
Distribute the [tex]\( t \)[/tex] in the second term:
[tex]\[ s = ut + \frac{1}{2} v t - \frac{1}{2} u t \][/tex]
Combine the like terms:
[tex]\[ s = ut - \frac{1}{2} u t + \frac{1}{2} v t \][/tex]
[tex]\[ s = \frac{1}{2} u t + \frac{1}{2} v t \][/tex]
Factor out [tex]\( t/2 \)[/tex]:
[tex]\[ s = \frac{t}{2} (u + v) \][/tex]
6. Rearrange the equation:
Finally, express this in a more familiar form:
[tex]\[ s = \frac{u + v}{2} \times t \][/tex]
Thus, we have shown that the formula [tex]\( s = \frac{u+v}{2} \times t \)[/tex] is correct. This completes the proof.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.