Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To prove that the formula [tex]\( s = \frac{u+v}{2} \times t \)[/tex] is correct, let's start from fundamental principles of motion under uniform acceleration.
1. Given:
- [tex]\( u \)[/tex] is the initial velocity.
- [tex]\( v \)[/tex] is the final velocity.
- [tex]\( t \)[/tex] is the time taken.
- [tex]\( s \)[/tex] is the distance traveled.
2. Distance formula under uniform acceleration:
The uniformly accelerated motion can be described by the equation:
[tex]\[ s = ut + \frac{1}{2}at^2 \][/tex]
Here, [tex]\( a \)[/tex] is the acceleration.
3. Final velocity relation:
The final velocity [tex]\( v \)[/tex] can be expressed in terms of the initial velocity and acceleration:
[tex]\[ v = u + at \][/tex]
From this equation, we can solve for acceleration [tex]\( a \)[/tex]:
[tex]\[ a = \frac{v - u}{t} \][/tex]
4. Substitute [tex]\( a \)[/tex] in the distance formula:
Now, substitute [tex]\( a = \frac{v - u}{t} \)[/tex] into the distance formula [tex]\( s = ut + \frac{1}{2}at^2 \)[/tex]:
[tex]\[ s = ut + \frac{1}{2} \left(\frac{v - u}{t}\right) t^2 \][/tex]
5. Simplify the equation:
Simplify the expression:
[tex]\[ s = ut + \frac{1}{2} (v - u) t \][/tex]
Distribute the [tex]\( t \)[/tex] in the second term:
[tex]\[ s = ut + \frac{1}{2} v t - \frac{1}{2} u t \][/tex]
Combine the like terms:
[tex]\[ s = ut - \frac{1}{2} u t + \frac{1}{2} v t \][/tex]
[tex]\[ s = \frac{1}{2} u t + \frac{1}{2} v t \][/tex]
Factor out [tex]\( t/2 \)[/tex]:
[tex]\[ s = \frac{t}{2} (u + v) \][/tex]
6. Rearrange the equation:
Finally, express this in a more familiar form:
[tex]\[ s = \frac{u + v}{2} \times t \][/tex]
Thus, we have shown that the formula [tex]\( s = \frac{u+v}{2} \times t \)[/tex] is correct. This completes the proof.
1. Given:
- [tex]\( u \)[/tex] is the initial velocity.
- [tex]\( v \)[/tex] is the final velocity.
- [tex]\( t \)[/tex] is the time taken.
- [tex]\( s \)[/tex] is the distance traveled.
2. Distance formula under uniform acceleration:
The uniformly accelerated motion can be described by the equation:
[tex]\[ s = ut + \frac{1}{2}at^2 \][/tex]
Here, [tex]\( a \)[/tex] is the acceleration.
3. Final velocity relation:
The final velocity [tex]\( v \)[/tex] can be expressed in terms of the initial velocity and acceleration:
[tex]\[ v = u + at \][/tex]
From this equation, we can solve for acceleration [tex]\( a \)[/tex]:
[tex]\[ a = \frac{v - u}{t} \][/tex]
4. Substitute [tex]\( a \)[/tex] in the distance formula:
Now, substitute [tex]\( a = \frac{v - u}{t} \)[/tex] into the distance formula [tex]\( s = ut + \frac{1}{2}at^2 \)[/tex]:
[tex]\[ s = ut + \frac{1}{2} \left(\frac{v - u}{t}\right) t^2 \][/tex]
5. Simplify the equation:
Simplify the expression:
[tex]\[ s = ut + \frac{1}{2} (v - u) t \][/tex]
Distribute the [tex]\( t \)[/tex] in the second term:
[tex]\[ s = ut + \frac{1}{2} v t - \frac{1}{2} u t \][/tex]
Combine the like terms:
[tex]\[ s = ut - \frac{1}{2} u t + \frac{1}{2} v t \][/tex]
[tex]\[ s = \frac{1}{2} u t + \frac{1}{2} v t \][/tex]
Factor out [tex]\( t/2 \)[/tex]:
[tex]\[ s = \frac{t}{2} (u + v) \][/tex]
6. Rearrange the equation:
Finally, express this in a more familiar form:
[tex]\[ s = \frac{u + v}{2} \times t \][/tex]
Thus, we have shown that the formula [tex]\( s = \frac{u+v}{2} \times t \)[/tex] is correct. This completes the proof.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.