Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Question 7

A copper cylinder and a brass cylinder are stacked end to end, as in the drawing. Each cylinder has a radius of [tex]0.25 \, \text{cm}[/tex]. A compressive force of [tex]F = 6500 \, \text{N}[/tex] is applied to the right end of the brass cylinder. Find the amount by which the length of the stack decreases.

Both cylinders experience the same force [tex]F[/tex]. The magnitude of this force is related to the change in length of each cylinder according to [tex]F = Y \left(\frac{\Delta L}{L_0}\right) A[/tex]. Each cylinder decreases in length; the total decrease is the sum of the decreases for each cylinder.

[tex]\[ F = Y \left(\frac{\Delta L}{L_0}\right) A \Rightarrow \Delta L_{\text{copper}} = \frac{F L_0}{Y A} = \frac{6500 \times 3.0 \times 10^{-2}}{-\left(0.25 \times 10^{-2}\right)^2} = 9.2 \times 10^{-5} \, \text{m} \][/tex]

(Note: Ensure the units and values in the equations are correctly applied according to the specific properties of copper and brass, such as Young's modulus [tex]Y[/tex] and original length [tex]L_0[/tex]).

Sagot :

Sure! Let's solve the problem step-by-step:

### Given Data:
1. Radius of each cylinder: [tex]\( r = 0.25 \, \text{cm} = 0.25 \times 10^{-2} \, \text{m} = 0.0025 \, \text{m} \)[/tex]
2. Compressive force: [tex]\( F = 6500 \, \text{N} \)[/tex]
3. Young's Modulus for Copper (Y_copper): [tex]\( Y_{\text{copper}} = 1.1 \times 10^{11} \, \text{Pa} \)[/tex]
4. Young's Modulus for Brass (Y_brass): [tex]\( Y_{\text{brass}} = 9.0 \times 10^{10} \, \text{Pa} \)[/tex]
5. Original length of the Copper cylinder (L0_copper): [tex]\( L0_{\text{copper}} = 0.03 \, \text{m} \)[/tex]
6. Original length of the Brass cylinder (L0_brass): [tex]\( L0_{\text{brass}} = 0.03 \, \text{m} \)[/tex]

### Step-by-Step Solution:

1. Calculate the cross-sectional area (A) of each cylinder:

[tex]\[ A = \pi r^2 = \pi (0.0025 \, \text{m})^2 = \pi \times 6.25 \times 10^{-6} \, \text{m}^2 = 1.963495408 \times 10^{-5} \, \text{m}^2. \][/tex]

2. Calculate the deformation (ΔL) for the copper cylinder:

[tex]\[ \Delta L_{\text{copper}} = \frac{F \cdot L0_{\text{copper}}}{Y_{\text{copper}} \cdot A} \][/tex]

Substitute the values:

[tex]\[ \Delta L_{\text{copper}} = \frac{6500 \, \text{N} \times 0.03 \, \text{m}}{1.1 \times 10^{11} \, \text{Pa} \times 1.963495408 \times 10^{-5} \, \text{m}^2}. \][/tex]

[tex]\[ \Delta L_{\text{copper}} \approx 9.028425862667518 \times 10^{-5} \, \text{m} = 0.000090284 \, \text{m}. \][/tex]

3. Calculate the deformation (ΔL) for the brass cylinder:

[tex]\[ \Delta L_{\text{brass}} = \frac{F \cdot L0_{\text{brass}}}{Y_{\text{brass}} \cdot A} \][/tex]

Substitute the values:

[tex]\[ \Delta L_{\text{brass}} = \frac{6500 \, \text{N} \times 0.03 \, \text{m}}{9.0 \times 10^{10} \, \text{Pa} \times 1.963495408 \times 10^{-5} \, \text{m}^2}. \][/tex]

[tex]\[ \Delta L_{\text{brass}} \approx 0.00011034742721038078 \, \text{m} = 0.000110347 \, \text{m}. \][/tex]

4. Calculate the total decrease in length of the stack:

[tex]\[ \Delta L_{\text{total}} = \Delta L_{\text{copper}} + \Delta L_{\text{brass}} \][/tex]

[tex]\[ \Delta L_{\text{total}} = 0.000090284 \, \text{m} + 0.000110347 \, \text{m}. \][/tex]

[tex]\[ \Delta L_{\text{total}} \approx 0.00020063168583705595 \, \text{m} = 0.000200632 \, \text{m}. \][/tex]

### Conclusion:
The amount by which the length of the stack decreases is approximately [tex]\(0.000200632 \, \text{m}\)[/tex] or [tex]\(0.20063 \, \text{mm}\)[/tex].