Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure! Let's solve the problem step-by-step:
### Given Data:
1. Radius of each cylinder: [tex]\( r = 0.25 \, \text{cm} = 0.25 \times 10^{-2} \, \text{m} = 0.0025 \, \text{m} \)[/tex]
2. Compressive force: [tex]\( F = 6500 \, \text{N} \)[/tex]
3. Young's Modulus for Copper (Y_copper): [tex]\( Y_{\text{copper}} = 1.1 \times 10^{11} \, \text{Pa} \)[/tex]
4. Young's Modulus for Brass (Y_brass): [tex]\( Y_{\text{brass}} = 9.0 \times 10^{10} \, \text{Pa} \)[/tex]
5. Original length of the Copper cylinder (L0_copper): [tex]\( L0_{\text{copper}} = 0.03 \, \text{m} \)[/tex]
6. Original length of the Brass cylinder (L0_brass): [tex]\( L0_{\text{brass}} = 0.03 \, \text{m} \)[/tex]
### Step-by-Step Solution:
1. Calculate the cross-sectional area (A) of each cylinder:
[tex]\[ A = \pi r^2 = \pi (0.0025 \, \text{m})^2 = \pi \times 6.25 \times 10^{-6} \, \text{m}^2 = 1.963495408 \times 10^{-5} \, \text{m}^2. \][/tex]
2. Calculate the deformation (ΔL) for the copper cylinder:
[tex]\[ \Delta L_{\text{copper}} = \frac{F \cdot L0_{\text{copper}}}{Y_{\text{copper}} \cdot A} \][/tex]
Substitute the values:
[tex]\[ \Delta L_{\text{copper}} = \frac{6500 \, \text{N} \times 0.03 \, \text{m}}{1.1 \times 10^{11} \, \text{Pa} \times 1.963495408 \times 10^{-5} \, \text{m}^2}. \][/tex]
[tex]\[ \Delta L_{\text{copper}} \approx 9.028425862667518 \times 10^{-5} \, \text{m} = 0.000090284 \, \text{m}. \][/tex]
3. Calculate the deformation (ΔL) for the brass cylinder:
[tex]\[ \Delta L_{\text{brass}} = \frac{F \cdot L0_{\text{brass}}}{Y_{\text{brass}} \cdot A} \][/tex]
Substitute the values:
[tex]\[ \Delta L_{\text{brass}} = \frac{6500 \, \text{N} \times 0.03 \, \text{m}}{9.0 \times 10^{10} \, \text{Pa} \times 1.963495408 \times 10^{-5} \, \text{m}^2}. \][/tex]
[tex]\[ \Delta L_{\text{brass}} \approx 0.00011034742721038078 \, \text{m} = 0.000110347 \, \text{m}. \][/tex]
4. Calculate the total decrease in length of the stack:
[tex]\[ \Delta L_{\text{total}} = \Delta L_{\text{copper}} + \Delta L_{\text{brass}} \][/tex]
[tex]\[ \Delta L_{\text{total}} = 0.000090284 \, \text{m} + 0.000110347 \, \text{m}. \][/tex]
[tex]\[ \Delta L_{\text{total}} \approx 0.00020063168583705595 \, \text{m} = 0.000200632 \, \text{m}. \][/tex]
### Conclusion:
The amount by which the length of the stack decreases is approximately [tex]\(0.000200632 \, \text{m}\)[/tex] or [tex]\(0.20063 \, \text{mm}\)[/tex].
### Given Data:
1. Radius of each cylinder: [tex]\( r = 0.25 \, \text{cm} = 0.25 \times 10^{-2} \, \text{m} = 0.0025 \, \text{m} \)[/tex]
2. Compressive force: [tex]\( F = 6500 \, \text{N} \)[/tex]
3. Young's Modulus for Copper (Y_copper): [tex]\( Y_{\text{copper}} = 1.1 \times 10^{11} \, \text{Pa} \)[/tex]
4. Young's Modulus for Brass (Y_brass): [tex]\( Y_{\text{brass}} = 9.0 \times 10^{10} \, \text{Pa} \)[/tex]
5. Original length of the Copper cylinder (L0_copper): [tex]\( L0_{\text{copper}} = 0.03 \, \text{m} \)[/tex]
6. Original length of the Brass cylinder (L0_brass): [tex]\( L0_{\text{brass}} = 0.03 \, \text{m} \)[/tex]
### Step-by-Step Solution:
1. Calculate the cross-sectional area (A) of each cylinder:
[tex]\[ A = \pi r^2 = \pi (0.0025 \, \text{m})^2 = \pi \times 6.25 \times 10^{-6} \, \text{m}^2 = 1.963495408 \times 10^{-5} \, \text{m}^2. \][/tex]
2. Calculate the deformation (ΔL) for the copper cylinder:
[tex]\[ \Delta L_{\text{copper}} = \frac{F \cdot L0_{\text{copper}}}{Y_{\text{copper}} \cdot A} \][/tex]
Substitute the values:
[tex]\[ \Delta L_{\text{copper}} = \frac{6500 \, \text{N} \times 0.03 \, \text{m}}{1.1 \times 10^{11} \, \text{Pa} \times 1.963495408 \times 10^{-5} \, \text{m}^2}. \][/tex]
[tex]\[ \Delta L_{\text{copper}} \approx 9.028425862667518 \times 10^{-5} \, \text{m} = 0.000090284 \, \text{m}. \][/tex]
3. Calculate the deformation (ΔL) for the brass cylinder:
[tex]\[ \Delta L_{\text{brass}} = \frac{F \cdot L0_{\text{brass}}}{Y_{\text{brass}} \cdot A} \][/tex]
Substitute the values:
[tex]\[ \Delta L_{\text{brass}} = \frac{6500 \, \text{N} \times 0.03 \, \text{m}}{9.0 \times 10^{10} \, \text{Pa} \times 1.963495408 \times 10^{-5} \, \text{m}^2}. \][/tex]
[tex]\[ \Delta L_{\text{brass}} \approx 0.00011034742721038078 \, \text{m} = 0.000110347 \, \text{m}. \][/tex]
4. Calculate the total decrease in length of the stack:
[tex]\[ \Delta L_{\text{total}} = \Delta L_{\text{copper}} + \Delta L_{\text{brass}} \][/tex]
[tex]\[ \Delta L_{\text{total}} = 0.000090284 \, \text{m} + 0.000110347 \, \text{m}. \][/tex]
[tex]\[ \Delta L_{\text{total}} \approx 0.00020063168583705595 \, \text{m} = 0.000200632 \, \text{m}. \][/tex]
### Conclusion:
The amount by which the length of the stack decreases is approximately [tex]\(0.000200632 \, \text{m}\)[/tex] or [tex]\(0.20063 \, \text{mm}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.