Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the estimated median value of the given frequency distribution of fuel efficiency in miles per gallon, follow these steps:
1. List the class boundaries and their frequencies:
- 7.5 - 12.5: 3
- 12.5 - 17.5: 5
- 17.5 - 22.5: 15
- 22.5 - 27.5: 5
- 27.5 - 32.5: 2
2. Calculate the cumulative frequencies:
- Cumulative frequency up to 7.5 - 12.5: 3
- Cumulative frequency up to 12.5 - 17.5: 3 + 5 = 8
- Cumulative frequency up to 17.5 - 22.5: 8 + 15 = 23
- Cumulative frequency up to 22.5 - 27.5: 23 + 5 = 28
- Cumulative frequency up to 27.5 - 32.5: 28 + 2 = 30
3. Find the total number of observations, [tex]\( n \)[/tex]:
- [tex]\( n = 3 + 5 + 15 + 5 + 2 = 30 \)[/tex]
4. Determine the position of the median in the ordered data set:
- Median position [tex]\( = \frac{n + 1}{2} = \frac{30 + 1}{2} = 15.5 \)[/tex]
5. Identify the median class:
- The median position, 15.5, falls within the cumulative frequency of 23, which corresponds to the class boundary 17.5 - 22.5.
6. Extract the necessary values for the median class:
- Lower boundary ([tex]\(L\)[/tex]) of the median class = 17.5
- Frequency ([tex]\(f\)[/tex]) of the median class = 15
- Cumulative frequency before the median class ([tex]\(cf_{prev}\)[/tex]) = 8
- Class interval size ([tex]\(h\)[/tex]) = 22.5 - 17.5 = 5
7. Calculate the median using the formula:
[tex]\[ \text{Median} = L + \left( \frac{\frac{n+1}{2} - cf_{prev}}{f} \right) \times h \][/tex]
Substituting the values:
[tex]\[ \text{Median} = 17.5 + \left( \frac{15.5 - 8}{15} \right) \times 5 \][/tex]
8. Simplify the calculations:
[tex]\[ \text{Median} = 17.5 + \left( \frac{7.5}{15} \right) \times 5 \][/tex]
[tex]\[ \text{Median} = 17.5 + \left( 0.5 \right) \times 5 \][/tex]
[tex]\[ \text{Median} = 17.5 + 2.5 \][/tex]
[tex]\[ \text{Median} = 20.0 \][/tex]
Thus, the estimated median value of the distribution is [tex]\( \boxed{20.0} \)[/tex].
1. List the class boundaries and their frequencies:
- 7.5 - 12.5: 3
- 12.5 - 17.5: 5
- 17.5 - 22.5: 15
- 22.5 - 27.5: 5
- 27.5 - 32.5: 2
2. Calculate the cumulative frequencies:
- Cumulative frequency up to 7.5 - 12.5: 3
- Cumulative frequency up to 12.5 - 17.5: 3 + 5 = 8
- Cumulative frequency up to 17.5 - 22.5: 8 + 15 = 23
- Cumulative frequency up to 22.5 - 27.5: 23 + 5 = 28
- Cumulative frequency up to 27.5 - 32.5: 28 + 2 = 30
3. Find the total number of observations, [tex]\( n \)[/tex]:
- [tex]\( n = 3 + 5 + 15 + 5 + 2 = 30 \)[/tex]
4. Determine the position of the median in the ordered data set:
- Median position [tex]\( = \frac{n + 1}{2} = \frac{30 + 1}{2} = 15.5 \)[/tex]
5. Identify the median class:
- The median position, 15.5, falls within the cumulative frequency of 23, which corresponds to the class boundary 17.5 - 22.5.
6. Extract the necessary values for the median class:
- Lower boundary ([tex]\(L\)[/tex]) of the median class = 17.5
- Frequency ([tex]\(f\)[/tex]) of the median class = 15
- Cumulative frequency before the median class ([tex]\(cf_{prev}\)[/tex]) = 8
- Class interval size ([tex]\(h\)[/tex]) = 22.5 - 17.5 = 5
7. Calculate the median using the formula:
[tex]\[ \text{Median} = L + \left( \frac{\frac{n+1}{2} - cf_{prev}}{f} \right) \times h \][/tex]
Substituting the values:
[tex]\[ \text{Median} = 17.5 + \left( \frac{15.5 - 8}{15} \right) \times 5 \][/tex]
8. Simplify the calculations:
[tex]\[ \text{Median} = 17.5 + \left( \frac{7.5}{15} \right) \times 5 \][/tex]
[tex]\[ \text{Median} = 17.5 + \left( 0.5 \right) \times 5 \][/tex]
[tex]\[ \text{Median} = 17.5 + 2.5 \][/tex]
[tex]\[ \text{Median} = 20.0 \][/tex]
Thus, the estimated median value of the distribution is [tex]\( \boxed{20.0} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.