Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the estimated median value of the given frequency distribution of fuel efficiency in miles per gallon, follow these steps:
1. List the class boundaries and their frequencies:
- 7.5 - 12.5: 3
- 12.5 - 17.5: 5
- 17.5 - 22.5: 15
- 22.5 - 27.5: 5
- 27.5 - 32.5: 2
2. Calculate the cumulative frequencies:
- Cumulative frequency up to 7.5 - 12.5: 3
- Cumulative frequency up to 12.5 - 17.5: 3 + 5 = 8
- Cumulative frequency up to 17.5 - 22.5: 8 + 15 = 23
- Cumulative frequency up to 22.5 - 27.5: 23 + 5 = 28
- Cumulative frequency up to 27.5 - 32.5: 28 + 2 = 30
3. Find the total number of observations, [tex]\( n \)[/tex]:
- [tex]\( n = 3 + 5 + 15 + 5 + 2 = 30 \)[/tex]
4. Determine the position of the median in the ordered data set:
- Median position [tex]\( = \frac{n + 1}{2} = \frac{30 + 1}{2} = 15.5 \)[/tex]
5. Identify the median class:
- The median position, 15.5, falls within the cumulative frequency of 23, which corresponds to the class boundary 17.5 - 22.5.
6. Extract the necessary values for the median class:
- Lower boundary ([tex]\(L\)[/tex]) of the median class = 17.5
- Frequency ([tex]\(f\)[/tex]) of the median class = 15
- Cumulative frequency before the median class ([tex]\(cf_{prev}\)[/tex]) = 8
- Class interval size ([tex]\(h\)[/tex]) = 22.5 - 17.5 = 5
7. Calculate the median using the formula:
[tex]\[ \text{Median} = L + \left( \frac{\frac{n+1}{2} - cf_{prev}}{f} \right) \times h \][/tex]
Substituting the values:
[tex]\[ \text{Median} = 17.5 + \left( \frac{15.5 - 8}{15} \right) \times 5 \][/tex]
8. Simplify the calculations:
[tex]\[ \text{Median} = 17.5 + \left( \frac{7.5}{15} \right) \times 5 \][/tex]
[tex]\[ \text{Median} = 17.5 + \left( 0.5 \right) \times 5 \][/tex]
[tex]\[ \text{Median} = 17.5 + 2.5 \][/tex]
[tex]\[ \text{Median} = 20.0 \][/tex]
Thus, the estimated median value of the distribution is [tex]\( \boxed{20.0} \)[/tex].
1. List the class boundaries and their frequencies:
- 7.5 - 12.5: 3
- 12.5 - 17.5: 5
- 17.5 - 22.5: 15
- 22.5 - 27.5: 5
- 27.5 - 32.5: 2
2. Calculate the cumulative frequencies:
- Cumulative frequency up to 7.5 - 12.5: 3
- Cumulative frequency up to 12.5 - 17.5: 3 + 5 = 8
- Cumulative frequency up to 17.5 - 22.5: 8 + 15 = 23
- Cumulative frequency up to 22.5 - 27.5: 23 + 5 = 28
- Cumulative frequency up to 27.5 - 32.5: 28 + 2 = 30
3. Find the total number of observations, [tex]\( n \)[/tex]:
- [tex]\( n = 3 + 5 + 15 + 5 + 2 = 30 \)[/tex]
4. Determine the position of the median in the ordered data set:
- Median position [tex]\( = \frac{n + 1}{2} = \frac{30 + 1}{2} = 15.5 \)[/tex]
5. Identify the median class:
- The median position, 15.5, falls within the cumulative frequency of 23, which corresponds to the class boundary 17.5 - 22.5.
6. Extract the necessary values for the median class:
- Lower boundary ([tex]\(L\)[/tex]) of the median class = 17.5
- Frequency ([tex]\(f\)[/tex]) of the median class = 15
- Cumulative frequency before the median class ([tex]\(cf_{prev}\)[/tex]) = 8
- Class interval size ([tex]\(h\)[/tex]) = 22.5 - 17.5 = 5
7. Calculate the median using the formula:
[tex]\[ \text{Median} = L + \left( \frac{\frac{n+1}{2} - cf_{prev}}{f} \right) \times h \][/tex]
Substituting the values:
[tex]\[ \text{Median} = 17.5 + \left( \frac{15.5 - 8}{15} \right) \times 5 \][/tex]
8. Simplify the calculations:
[tex]\[ \text{Median} = 17.5 + \left( \frac{7.5}{15} \right) \times 5 \][/tex]
[tex]\[ \text{Median} = 17.5 + \left( 0.5 \right) \times 5 \][/tex]
[tex]\[ \text{Median} = 17.5 + 2.5 \][/tex]
[tex]\[ \text{Median} = 20.0 \][/tex]
Thus, the estimated median value of the distribution is [tex]\( \boxed{20.0} \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.