Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem, we need to determine the value of [tex]\( x \)[/tex] given the perimeter of the polygon [tex]\( ABCD \)[/tex]. We know the lengths of sides [tex]\( AB \)[/tex], [tex]\(\ BC \)[/tex], [tex]\( CD \)[/tex], and [tex]\( AD \)[/tex], and we know the total perimeter.
1. List the given information:
[tex]\[ AB = 12, \quad BC = \sqrt{2x + 54}, \quad CD = 10, \quad AD = 6 \][/tex]
2. Calculate the perimeter:
The perimeter of polygon [tex]\( ABCD \)[/tex] is given as 35. Hence, we can set up the following equation:
[tex]\[ AB + BC + CD + AD = 35 \][/tex]
3. Substitute the given lengths into the perimeter equation:
[tex]\[ 12 + \sqrt{2x + 54} + 10 + 6 = 35 \][/tex]
4. Simplify the equation:
Combine the known lengths:
[tex]\[ 12 + 10 + 6 = 28 \][/tex]
Thus, the equation becomes:
[tex]\[ 28 + \sqrt{2x + 54} = 35 \][/tex]
5. Isolate the square root term:
Subtract 28 from both sides:
[tex]\[ \sqrt{2x + 54} = 35 - 28 \][/tex]
[tex]\[ \sqrt{2x + 54} = 7 \][/tex]
6. Square both sides to eliminate the square root:
[tex]\[ (\sqrt{2x + 54})^2 = 7^2 \][/tex]
[tex]\[ 2x + 54 = 49 \][/tex]
7. Solve for [tex]\( x \)[/tex]:
Subtract 54 from both sides:
[tex]\[ 2x = 49 - 54 \][/tex]
[tex]\[ 2x = -5 \][/tex]
Divide by 2:
[tex]\[ x = \frac{-5}{2} \][/tex]
Therefore, the radical equation to be solved is
[tex]\[ \sqrt{2x + 54} + 28 = 35 \][/tex]
and the solution to this equation is
[tex]\[ x = -\frac{5}{2} \][/tex]
1. List the given information:
[tex]\[ AB = 12, \quad BC = \sqrt{2x + 54}, \quad CD = 10, \quad AD = 6 \][/tex]
2. Calculate the perimeter:
The perimeter of polygon [tex]\( ABCD \)[/tex] is given as 35. Hence, we can set up the following equation:
[tex]\[ AB + BC + CD + AD = 35 \][/tex]
3. Substitute the given lengths into the perimeter equation:
[tex]\[ 12 + \sqrt{2x + 54} + 10 + 6 = 35 \][/tex]
4. Simplify the equation:
Combine the known lengths:
[tex]\[ 12 + 10 + 6 = 28 \][/tex]
Thus, the equation becomes:
[tex]\[ 28 + \sqrt{2x + 54} = 35 \][/tex]
5. Isolate the square root term:
Subtract 28 from both sides:
[tex]\[ \sqrt{2x + 54} = 35 - 28 \][/tex]
[tex]\[ \sqrt{2x + 54} = 7 \][/tex]
6. Square both sides to eliminate the square root:
[tex]\[ (\sqrt{2x + 54})^2 = 7^2 \][/tex]
[tex]\[ 2x + 54 = 49 \][/tex]
7. Solve for [tex]\( x \)[/tex]:
Subtract 54 from both sides:
[tex]\[ 2x = 49 - 54 \][/tex]
[tex]\[ 2x = -5 \][/tex]
Divide by 2:
[tex]\[ x = \frac{-5}{2} \][/tex]
Therefore, the radical equation to be solved is
[tex]\[ \sqrt{2x + 54} + 28 = 35 \][/tex]
and the solution to this equation is
[tex]\[ x = -\frac{5}{2} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.