Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the problem, we need to determine the value of [tex]\( x \)[/tex] given the perimeter of the polygon [tex]\( ABCD \)[/tex]. We know the lengths of sides [tex]\( AB \)[/tex], [tex]\(\ BC \)[/tex], [tex]\( CD \)[/tex], and [tex]\( AD \)[/tex], and we know the total perimeter.
1. List the given information:
[tex]\[ AB = 12, \quad BC = \sqrt{2x + 54}, \quad CD = 10, \quad AD = 6 \][/tex]
2. Calculate the perimeter:
The perimeter of polygon [tex]\( ABCD \)[/tex] is given as 35. Hence, we can set up the following equation:
[tex]\[ AB + BC + CD + AD = 35 \][/tex]
3. Substitute the given lengths into the perimeter equation:
[tex]\[ 12 + \sqrt{2x + 54} + 10 + 6 = 35 \][/tex]
4. Simplify the equation:
Combine the known lengths:
[tex]\[ 12 + 10 + 6 = 28 \][/tex]
Thus, the equation becomes:
[tex]\[ 28 + \sqrt{2x + 54} = 35 \][/tex]
5. Isolate the square root term:
Subtract 28 from both sides:
[tex]\[ \sqrt{2x + 54} = 35 - 28 \][/tex]
[tex]\[ \sqrt{2x + 54} = 7 \][/tex]
6. Square both sides to eliminate the square root:
[tex]\[ (\sqrt{2x + 54})^2 = 7^2 \][/tex]
[tex]\[ 2x + 54 = 49 \][/tex]
7. Solve for [tex]\( x \)[/tex]:
Subtract 54 from both sides:
[tex]\[ 2x = 49 - 54 \][/tex]
[tex]\[ 2x = -5 \][/tex]
Divide by 2:
[tex]\[ x = \frac{-5}{2} \][/tex]
Therefore, the radical equation to be solved is
[tex]\[ \sqrt{2x + 54} + 28 = 35 \][/tex]
and the solution to this equation is
[tex]\[ x = -\frac{5}{2} \][/tex]
1. List the given information:
[tex]\[ AB = 12, \quad BC = \sqrt{2x + 54}, \quad CD = 10, \quad AD = 6 \][/tex]
2. Calculate the perimeter:
The perimeter of polygon [tex]\( ABCD \)[/tex] is given as 35. Hence, we can set up the following equation:
[tex]\[ AB + BC + CD + AD = 35 \][/tex]
3. Substitute the given lengths into the perimeter equation:
[tex]\[ 12 + \sqrt{2x + 54} + 10 + 6 = 35 \][/tex]
4. Simplify the equation:
Combine the known lengths:
[tex]\[ 12 + 10 + 6 = 28 \][/tex]
Thus, the equation becomes:
[tex]\[ 28 + \sqrt{2x + 54} = 35 \][/tex]
5. Isolate the square root term:
Subtract 28 from both sides:
[tex]\[ \sqrt{2x + 54} = 35 - 28 \][/tex]
[tex]\[ \sqrt{2x + 54} = 7 \][/tex]
6. Square both sides to eliminate the square root:
[tex]\[ (\sqrt{2x + 54})^2 = 7^2 \][/tex]
[tex]\[ 2x + 54 = 49 \][/tex]
7. Solve for [tex]\( x \)[/tex]:
Subtract 54 from both sides:
[tex]\[ 2x = 49 - 54 \][/tex]
[tex]\[ 2x = -5 \][/tex]
Divide by 2:
[tex]\[ x = \frac{-5}{2} \][/tex]
Therefore, the radical equation to be solved is
[tex]\[ \sqrt{2x + 54} + 28 = 35 \][/tex]
and the solution to this equation is
[tex]\[ x = -\frac{5}{2} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.