Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the equation of the parabola given its focus and directrix, follow these steps:
1. Identify the components:
- The focus of the parabola is given as [tex]\((4, 0)\)[/tex].
- The directrix of the parabola is [tex]\(x = -4\)[/tex].
2. Understand the structure of a parabolic equation with a horizontal directrix:
- When a parabola opens sideways (in this case, opens right), its standard form is [tex]\(y^2 = 4ax\)[/tex], where [tex]\(a\)[/tex] is the distance between the vertex and the focus (and also between the vertex and the directrix).
3. Calculate the distance [tex]\(a\)[/tex]:
- The vertex of the parabola is exactly midway between the focus and the directrix.
- The focus is at [tex]\(x = 4\)[/tex] and the directrix at [tex]\(x = -4\)[/tex].
- Distance between the focus and the directrix is [tex]\(4 - (-4) = 8\)[/tex].
- Therefore, the distance [tex]\(a\)[/tex] (from the vertex to the focus or to the directrix) will be half of this distance: [tex]\(a = \frac{8}{2} = 4\)[/tex].
4. Form the equation:
- Substitute [tex]\(a = 4\)[/tex] into the standard form [tex]\(y^2 = 4ax\)[/tex].
- This gives: [tex]\(y^2 = 4 \cdot 4 \cdot x\)[/tex].
- Simplified, it becomes: [tex]\(y^2 = 16x\)[/tex].
Therefore, the equation that represents the parabola is:
[tex]\[ \boxed{y^2 = 16x} \][/tex]
1. Identify the components:
- The focus of the parabola is given as [tex]\((4, 0)\)[/tex].
- The directrix of the parabola is [tex]\(x = -4\)[/tex].
2. Understand the structure of a parabolic equation with a horizontal directrix:
- When a parabola opens sideways (in this case, opens right), its standard form is [tex]\(y^2 = 4ax\)[/tex], where [tex]\(a\)[/tex] is the distance between the vertex and the focus (and also between the vertex and the directrix).
3. Calculate the distance [tex]\(a\)[/tex]:
- The vertex of the parabola is exactly midway between the focus and the directrix.
- The focus is at [tex]\(x = 4\)[/tex] and the directrix at [tex]\(x = -4\)[/tex].
- Distance between the focus and the directrix is [tex]\(4 - (-4) = 8\)[/tex].
- Therefore, the distance [tex]\(a\)[/tex] (from the vertex to the focus or to the directrix) will be half of this distance: [tex]\(a = \frac{8}{2} = 4\)[/tex].
4. Form the equation:
- Substitute [tex]\(a = 4\)[/tex] into the standard form [tex]\(y^2 = 4ax\)[/tex].
- This gives: [tex]\(y^2 = 4 \cdot 4 \cdot x\)[/tex].
- Simplified, it becomes: [tex]\(y^2 = 16x\)[/tex].
Therefore, the equation that represents the parabola is:
[tex]\[ \boxed{y^2 = 16x} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.