At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the angle of rotation when the center of rotation is at the origin, and the transformation is given by [tex]\( A(2,3) \longrightarrow A'(-3,2) \)[/tex], follow these steps:
1. Convert the coordinates of each point into polar coordinates: This involves finding the angle each point makes with the positive x-axis.
2. Calculate the angle [tex]\(\theta_A\)[/tex] for [tex]\(A(2, 3)\)[/tex]:
[tex]\[ \theta_A = \arctan\left(\frac{3}{2}\right) \][/tex]
From the given data, [tex]\(\theta_A \approx 0.9828\)[/tex] radians.
3. Calculate the angle [tex]\(\theta_{A'}\)[/tex] for [tex]\(A'(-3, 2)\)[/tex]:
[tex]\[ \theta_{A'} = \arctan\left(\frac{2}{-3}\right) \][/tex]
Bearing in mind that this angle lies in the second quadrant, we adjust as necessary:
From the given data, [tex]\(\theta_{A'} \approx 2.5536\)[/tex] radians.
4. Find the difference between the angles: The rotation angle is the difference between [tex]\(\theta_{A'}\)[/tex] and [tex]\(\theta_A\)[/tex]:
[tex]\[ \Delta\theta = \theta_{A'} - \theta_A \][/tex]
Substituting the values, we get:
[tex]\[ \Delta\theta \approx 2.5536 - 0.9828 = 1.5708 \text{ radians} \][/tex]
5. Convert the rotation angle from radians to degrees: Since angles are often more easily understood in degrees,
[tex]\[ \Delta\theta_{\text{degrees}} = \Delta\theta \cdot \frac{180}{\pi} \][/tex]
Using the given data, [tex]\(\Delta\theta_{\text{degrees}} \approx 90.0^\circ \)[/tex].
So, the angle of rotation for the transformation [tex]\( A(2, 3) \longrightarrow A'(-3, 2) \)[/tex] when the center of rotation is at the origin is [tex]\( \boxed{90^\circ} \)[/tex].
1. Convert the coordinates of each point into polar coordinates: This involves finding the angle each point makes with the positive x-axis.
2. Calculate the angle [tex]\(\theta_A\)[/tex] for [tex]\(A(2, 3)\)[/tex]:
[tex]\[ \theta_A = \arctan\left(\frac{3}{2}\right) \][/tex]
From the given data, [tex]\(\theta_A \approx 0.9828\)[/tex] radians.
3. Calculate the angle [tex]\(\theta_{A'}\)[/tex] for [tex]\(A'(-3, 2)\)[/tex]:
[tex]\[ \theta_{A'} = \arctan\left(\frac{2}{-3}\right) \][/tex]
Bearing in mind that this angle lies in the second quadrant, we adjust as necessary:
From the given data, [tex]\(\theta_{A'} \approx 2.5536\)[/tex] radians.
4. Find the difference between the angles: The rotation angle is the difference between [tex]\(\theta_{A'}\)[/tex] and [tex]\(\theta_A\)[/tex]:
[tex]\[ \Delta\theta = \theta_{A'} - \theta_A \][/tex]
Substituting the values, we get:
[tex]\[ \Delta\theta \approx 2.5536 - 0.9828 = 1.5708 \text{ radians} \][/tex]
5. Convert the rotation angle from radians to degrees: Since angles are often more easily understood in degrees,
[tex]\[ \Delta\theta_{\text{degrees}} = \Delta\theta \cdot \frac{180}{\pi} \][/tex]
Using the given data, [tex]\(\Delta\theta_{\text{degrees}} \approx 90.0^\circ \)[/tex].
So, the angle of rotation for the transformation [tex]\( A(2, 3) \longrightarrow A'(-3, 2) \)[/tex] when the center of rotation is at the origin is [tex]\( \boxed{90^\circ} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.