Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the midpoint of the line segment [tex]\(\overline{GH}\)[/tex] with endpoints [tex]\(G(14,3)\)[/tex] and [tex]\(H(10,-6)\)[/tex], we use the midpoint formula. The midpoint formula for a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Given the coordinates [tex]\(G(14, 3)\)[/tex] and [tex]\(H(10, -6)\)[/tex], we can substitute these values into the formula. Let's calculate each component step by step.
1. Calculate the x-coordinate of the midpoint:
[tex]\[ \text{x-coordinate} = \frac{14 + 10}{2} \][/tex]
Add the x-coordinates:
[tex]\[ 14 + 10 = 24 \][/tex]
Then divide by 2:
[tex]\[ \frac{24}{2} = 12 \][/tex]
2. Calculate the y-coordinate of the midpoint:
[tex]\[ \text{y-coordinate} = \frac{3 + (-6)}{2} \][/tex]
Add the y-coordinates:
[tex]\[ 3 + (-6) = -3 \][/tex]
Then divide by 2:
[tex]\[ \frac{-3}{2} = -1.5 \][/tex]
So, the coordinates of the midpoint are:
[tex]\[ (12, -1.5) \][/tex]
Given the options provided, the correct answer is:
[tex]\[ \text{C.} \quad \left(12, -\frac{3}{2}\right) \][/tex]
This is equivalent to [tex]\((12, -1.5)\)[/tex].
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Given the coordinates [tex]\(G(14, 3)\)[/tex] and [tex]\(H(10, -6)\)[/tex], we can substitute these values into the formula. Let's calculate each component step by step.
1. Calculate the x-coordinate of the midpoint:
[tex]\[ \text{x-coordinate} = \frac{14 + 10}{2} \][/tex]
Add the x-coordinates:
[tex]\[ 14 + 10 = 24 \][/tex]
Then divide by 2:
[tex]\[ \frac{24}{2} = 12 \][/tex]
2. Calculate the y-coordinate of the midpoint:
[tex]\[ \text{y-coordinate} = \frac{3 + (-6)}{2} \][/tex]
Add the y-coordinates:
[tex]\[ 3 + (-6) = -3 \][/tex]
Then divide by 2:
[tex]\[ \frac{-3}{2} = -1.5 \][/tex]
So, the coordinates of the midpoint are:
[tex]\[ (12, -1.5) \][/tex]
Given the options provided, the correct answer is:
[tex]\[ \text{C.} \quad \left(12, -\frac{3}{2}\right) \][/tex]
This is equivalent to [tex]\((12, -1.5)\)[/tex].
Answer:
C. (12, -3/2)
Step-by-step explanation:
Add the values of the x-coordinates and divide by 2.
Add the values of the y-coordinates and divide by 2.
(14 + 10)/2 = 24/2 = 12
(3 + (-6))/2 = -3/2
Answer: C. (12, -3/2)
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.