Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the equation of the line [tex]\(\overleftrightarrow{BC}\)[/tex], we need to follow several steps.
1. Define points [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
- Point [tex]\(A\)[/tex] has coordinates [tex]\((-3, -1)\)[/tex],
- Point [tex]\(B\)[/tex] has coordinates [tex]\((4, 4)\)[/tex].
2. Calculate the direction vector of [tex]\(\overline{AB}\)[/tex]:
- The direction vector is found by subtracting the coordinates of [tex]\(A\)[/tex] from the coordinates of [tex]\(B\)[/tex]:
[tex]\[ AB = B - A = (4 - (-3), 4 - (-1)) = (4 + 3, 4 + 1) = (7, 5) \][/tex]
3. Find a vector perpendicular to [tex]\(AB\)[/tex]:
- If [tex]\(AB = (x, y) = (7, 5)\)[/tex], a vector perpendicular to [tex]\(AB\)[/tex] can be [tex]\((-y, x)\)[/tex]:
[tex]\[ BC = (-5, 7) \][/tex]
4. Determine the slope of the line [tex]\(BC\)[/tex]:
- The slope of the line [tex]\(BC\)[/tex] is given by the ratio of the vertical component to the horizontal component of the vector [tex]\(BC\)[/tex]:
[tex]\[ \text{slope of } BC = \frac{7}{-5} = -1.4 \][/tex]
5. Use the point-slope form of the equation of a line:
- The point-slope form is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope.
6. Plug in point [tex]\(B = (4, 4)\)[/tex] and the slope:
- Using the slope [tex]\(m = -1.4\)[/tex] and point [tex]\(B(4, 4)\)[/tex]:
[tex]\[ y - 4 = -1.4(x - 4) \][/tex]
7. Rearrange to get the slope-intercept form [tex]\(y = mx + c\)[/tex]:
[tex]\[ y - 4 = -1.4x + 5.6 \][/tex]
[tex]\[ y = -1.4x + 5.6 + 4 \][/tex]
[tex]\[ y = -1.4x + 9.6 \][/tex]
Thus, the equation of the line [tex]\(\overleftrightarrow{BC}\)[/tex] is:
[tex]\[ y = -1.4x + 9.6 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{y = -1.4x + 9.6} \][/tex]
1. Define points [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
- Point [tex]\(A\)[/tex] has coordinates [tex]\((-3, -1)\)[/tex],
- Point [tex]\(B\)[/tex] has coordinates [tex]\((4, 4)\)[/tex].
2. Calculate the direction vector of [tex]\(\overline{AB}\)[/tex]:
- The direction vector is found by subtracting the coordinates of [tex]\(A\)[/tex] from the coordinates of [tex]\(B\)[/tex]:
[tex]\[ AB = B - A = (4 - (-3), 4 - (-1)) = (4 + 3, 4 + 1) = (7, 5) \][/tex]
3. Find a vector perpendicular to [tex]\(AB\)[/tex]:
- If [tex]\(AB = (x, y) = (7, 5)\)[/tex], a vector perpendicular to [tex]\(AB\)[/tex] can be [tex]\((-y, x)\)[/tex]:
[tex]\[ BC = (-5, 7) \][/tex]
4. Determine the slope of the line [tex]\(BC\)[/tex]:
- The slope of the line [tex]\(BC\)[/tex] is given by the ratio of the vertical component to the horizontal component of the vector [tex]\(BC\)[/tex]:
[tex]\[ \text{slope of } BC = \frac{7}{-5} = -1.4 \][/tex]
5. Use the point-slope form of the equation of a line:
- The point-slope form is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope.
6. Plug in point [tex]\(B = (4, 4)\)[/tex] and the slope:
- Using the slope [tex]\(m = -1.4\)[/tex] and point [tex]\(B(4, 4)\)[/tex]:
[tex]\[ y - 4 = -1.4(x - 4) \][/tex]
7. Rearrange to get the slope-intercept form [tex]\(y = mx + c\)[/tex]:
[tex]\[ y - 4 = -1.4x + 5.6 \][/tex]
[tex]\[ y = -1.4x + 5.6 + 4 \][/tex]
[tex]\[ y = -1.4x + 9.6 \][/tex]
Thus, the equation of the line [tex]\(\overleftrightarrow{BC}\)[/tex] is:
[tex]\[ y = -1.4x + 9.6 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{y = -1.4x + 9.6} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.