Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's work through the function step by step to define [tex]\( h(x) \)[/tex].
### Problem Statement
We are given the function [tex]\( h(x) \)[/tex] defined as:
[tex]\[ h(x) = 4x^3 + 2x^2 - 5 \][/tex]
### Breaking Down the Function
1. Cubic Term: The term [tex]\( 4x^3 \)[/tex] is a cubic term, meaning it has a degree of 3. This term will dominate the behavior of the function for very large or very small values of [tex]\( x \)[/tex].
2. Quadratic Term: The term [tex]\( 2x^2 \)[/tex] is a quadratic term, meaning it has a degree of 2. This term affects the curvature of the function but less so than the cubic term as [tex]\( x \)[/tex] grows larger in magnitude.
3. Constant Term: The term [tex]\(-5 \)[/tex] is a constant. This term shifts the entire function vertically downward by 5 units.
### Putting It All Together
The function [tex]\( h(x) \)[/tex] combines these three terms to create a unique polynomial of degree 3:
[tex]\[ h(x) = 4x^3 + 2x^2 - 5 \][/tex]
### Summary:
Therefore, for any value of [tex]\( x \)[/tex], [tex]\( h(x) \)[/tex] is calculated by plugging [tex]\( x \)[/tex] into the function [tex]\( 4x^3 + 2x^2 - 5 \)[/tex].
To illustrate, if we were to evaluate [tex]\( h(x) \)[/tex] at a specific point, for example, [tex]\( x = 1 \)[/tex]:
[tex]\[ h(1) = 4(1)^3 + 2(1)^2 - 5 \][/tex]
[tex]\[ h(1) = 4 + 2 - 5 \][/tex]
[tex]\[ h(1) = 1 \][/tex]
In conclusion, the function [tex]\( h(x) = 4x^3 + 2x^2 - 5 \)[/tex] describes a cubic polynomial with specific contributions from cubic, quadratic, and constant terms.
### Problem Statement
We are given the function [tex]\( h(x) \)[/tex] defined as:
[tex]\[ h(x) = 4x^3 + 2x^2 - 5 \][/tex]
### Breaking Down the Function
1. Cubic Term: The term [tex]\( 4x^3 \)[/tex] is a cubic term, meaning it has a degree of 3. This term will dominate the behavior of the function for very large or very small values of [tex]\( x \)[/tex].
2. Quadratic Term: The term [tex]\( 2x^2 \)[/tex] is a quadratic term, meaning it has a degree of 2. This term affects the curvature of the function but less so than the cubic term as [tex]\( x \)[/tex] grows larger in magnitude.
3. Constant Term: The term [tex]\(-5 \)[/tex] is a constant. This term shifts the entire function vertically downward by 5 units.
### Putting It All Together
The function [tex]\( h(x) \)[/tex] combines these three terms to create a unique polynomial of degree 3:
[tex]\[ h(x) = 4x^3 + 2x^2 - 5 \][/tex]
### Summary:
Therefore, for any value of [tex]\( x \)[/tex], [tex]\( h(x) \)[/tex] is calculated by plugging [tex]\( x \)[/tex] into the function [tex]\( 4x^3 + 2x^2 - 5 \)[/tex].
To illustrate, if we were to evaluate [tex]\( h(x) \)[/tex] at a specific point, for example, [tex]\( x = 1 \)[/tex]:
[tex]\[ h(1) = 4(1)^3 + 2(1)^2 - 5 \][/tex]
[tex]\[ h(1) = 4 + 2 - 5 \][/tex]
[tex]\[ h(1) = 1 \][/tex]
In conclusion, the function [tex]\( h(x) = 4x^3 + 2x^2 - 5 \)[/tex] describes a cubic polynomial with specific contributions from cubic, quadratic, and constant terms.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.