Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, let's start by examining the given information and properties of perpendicular lines.
1. Understand the slope of line [tex]\( m \)[/tex]:
- We are given that the slope of line [tex]\( m \)[/tex] is [tex]\(\frac{R}{q}\)[/tex].
2. Determine the slope of a perpendicular line:
- Two lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex].
- If the slope of line [tex]\( m \)[/tex] is [tex]\(\frac{R}{q}\)[/tex], then the slope of the line that is perpendicular to [tex]\( m \)[/tex] must be the negative reciprocal of [tex]\(\frac{R}{q}\)[/tex].
3. Calculate the negative reciprocal:
- To find the negative reciprocal, we take the reciprocal of [tex]\(\frac{R}{q}\)[/tex] and then multiply by -1.
- The reciprocal of [tex]\(\frac{R}{q}\)[/tex] is [tex]\(\frac{q}{R}\)[/tex].
- Multiplying by -1 gives us [tex]\(-\frac{q}{R}\)[/tex].
Therefore, the slope of a line that is perpendicular to line [tex]\( m \)[/tex] is [tex]\(-\frac{q}{R}\)[/tex].
Given the multiple-choice options:
- A. [tex]\(\frac{2}{q}\)[/tex]
- B. [tex]\(-\frac{q}{p}\)[/tex]
- C. [tex]\(\frac{q}{p}\)[/tex]
- D. [tex]\(-\frac{R}{q}\)[/tex]
The correct answer is not listed explicitly in the options provided above. As per the true mathematical solution based on perpendicular slopes, though, the correct perpendicular slope to [tex]\(\frac{R}{q}\)[/tex] is indeed:
[tex]\[ -\frac{q}{R} \][/tex]
1. Understand the slope of line [tex]\( m \)[/tex]:
- We are given that the slope of line [tex]\( m \)[/tex] is [tex]\(\frac{R}{q}\)[/tex].
2. Determine the slope of a perpendicular line:
- Two lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex].
- If the slope of line [tex]\( m \)[/tex] is [tex]\(\frac{R}{q}\)[/tex], then the slope of the line that is perpendicular to [tex]\( m \)[/tex] must be the negative reciprocal of [tex]\(\frac{R}{q}\)[/tex].
3. Calculate the negative reciprocal:
- To find the negative reciprocal, we take the reciprocal of [tex]\(\frac{R}{q}\)[/tex] and then multiply by -1.
- The reciprocal of [tex]\(\frac{R}{q}\)[/tex] is [tex]\(\frac{q}{R}\)[/tex].
- Multiplying by -1 gives us [tex]\(-\frac{q}{R}\)[/tex].
Therefore, the slope of a line that is perpendicular to line [tex]\( m \)[/tex] is [tex]\(-\frac{q}{R}\)[/tex].
Given the multiple-choice options:
- A. [tex]\(\frac{2}{q}\)[/tex]
- B. [tex]\(-\frac{q}{p}\)[/tex]
- C. [tex]\(\frac{q}{p}\)[/tex]
- D. [tex]\(-\frac{R}{q}\)[/tex]
The correct answer is not listed explicitly in the options provided above. As per the true mathematical solution based on perpendicular slopes, though, the correct perpendicular slope to [tex]\(\frac{R}{q}\)[/tex] is indeed:
[tex]\[ -\frac{q}{R} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.