Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the inverse Laplace transform of [tex]\(\frac{4s}{4s^2 + 1}\)[/tex], we can use standard techniques and known transforms. Here's a detailed, step-by-step solution:
Given:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) \][/tex]
First, let's simplify the given expression. Notice that the denominator can be factored as follows:
[tex]\[ 4s^2 + 1 = \left(2s\right)^2 + 1 \][/tex]
Thus, the given fraction can be rewritten as:
[tex]\[ \frac{4s}{4s^2 + 1} = \frac{4s}{(2s)^2 + 1} \][/tex]
Now, let's factor out constants to further simplify this:
[tex]\[ \frac{4s}{(2s)^2 + 1} = \frac{4 \cdot s}{4 \cdot (\left(\frac{2s}{2}\right)^2 + 1)} = \frac{4s}{4((\frac{2s}{2})^2 + 1)} = \frac{4s}{4} \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} = s \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} \][/tex]
Therefore, we simplify to:
[tex]\[ \frac{4s}{4s^2 + 1} = s \cdot \frac{1}{(2s)^2 + 1} \][/tex]
We now recognize that this is in the form [tex]\( s \cdot \frac{1}{s^2 + \alpha^2} \)[/tex], where [tex]\(\alpha = 1/2\)[/tex].
Recall the inverse Laplace transform for the standard form:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \alpha^2}\right) = \cos(\alpha t) \][/tex]
In our case, [tex]\(\alpha = \frac{1}{2}\)[/tex], so we have:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \left(\frac{1}{2}\right)^2}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
So, the inverse Laplace transform is:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
Thus, the solution is:
[tex]\[ \boxed{\cos\left(\frac{1}{2}t\right)} \][/tex]
Given:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) \][/tex]
First, let's simplify the given expression. Notice that the denominator can be factored as follows:
[tex]\[ 4s^2 + 1 = \left(2s\right)^2 + 1 \][/tex]
Thus, the given fraction can be rewritten as:
[tex]\[ \frac{4s}{4s^2 + 1} = \frac{4s}{(2s)^2 + 1} \][/tex]
Now, let's factor out constants to further simplify this:
[tex]\[ \frac{4s}{(2s)^2 + 1} = \frac{4 \cdot s}{4 \cdot (\left(\frac{2s}{2}\right)^2 + 1)} = \frac{4s}{4((\frac{2s}{2})^2 + 1)} = \frac{4s}{4} \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} = s \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} \][/tex]
Therefore, we simplify to:
[tex]\[ \frac{4s}{4s^2 + 1} = s \cdot \frac{1}{(2s)^2 + 1} \][/tex]
We now recognize that this is in the form [tex]\( s \cdot \frac{1}{s^2 + \alpha^2} \)[/tex], where [tex]\(\alpha = 1/2\)[/tex].
Recall the inverse Laplace transform for the standard form:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \alpha^2}\right) = \cos(\alpha t) \][/tex]
In our case, [tex]\(\alpha = \frac{1}{2}\)[/tex], so we have:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \left(\frac{1}{2}\right)^2}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
So, the inverse Laplace transform is:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
Thus, the solution is:
[tex]\[ \boxed{\cos\left(\frac{1}{2}t\right)} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.