At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the inverse Laplace transform of [tex]\(\frac{4s}{4s^2 + 1}\)[/tex], we can use standard techniques and known transforms. Here's a detailed, step-by-step solution:
Given:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) \][/tex]
First, let's simplify the given expression. Notice that the denominator can be factored as follows:
[tex]\[ 4s^2 + 1 = \left(2s\right)^2 + 1 \][/tex]
Thus, the given fraction can be rewritten as:
[tex]\[ \frac{4s}{4s^2 + 1} = \frac{4s}{(2s)^2 + 1} \][/tex]
Now, let's factor out constants to further simplify this:
[tex]\[ \frac{4s}{(2s)^2 + 1} = \frac{4 \cdot s}{4 \cdot (\left(\frac{2s}{2}\right)^2 + 1)} = \frac{4s}{4((\frac{2s}{2})^2 + 1)} = \frac{4s}{4} \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} = s \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} \][/tex]
Therefore, we simplify to:
[tex]\[ \frac{4s}{4s^2 + 1} = s \cdot \frac{1}{(2s)^2 + 1} \][/tex]
We now recognize that this is in the form [tex]\( s \cdot \frac{1}{s^2 + \alpha^2} \)[/tex], where [tex]\(\alpha = 1/2\)[/tex].
Recall the inverse Laplace transform for the standard form:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \alpha^2}\right) = \cos(\alpha t) \][/tex]
In our case, [tex]\(\alpha = \frac{1}{2}\)[/tex], so we have:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \left(\frac{1}{2}\right)^2}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
So, the inverse Laplace transform is:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
Thus, the solution is:
[tex]\[ \boxed{\cos\left(\frac{1}{2}t\right)} \][/tex]
Given:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) \][/tex]
First, let's simplify the given expression. Notice that the denominator can be factored as follows:
[tex]\[ 4s^2 + 1 = \left(2s\right)^2 + 1 \][/tex]
Thus, the given fraction can be rewritten as:
[tex]\[ \frac{4s}{4s^2 + 1} = \frac{4s}{(2s)^2 + 1} \][/tex]
Now, let's factor out constants to further simplify this:
[tex]\[ \frac{4s}{(2s)^2 + 1} = \frac{4 \cdot s}{4 \cdot (\left(\frac{2s}{2}\right)^2 + 1)} = \frac{4s}{4((\frac{2s}{2})^2 + 1)} = \frac{4s}{4} \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} = s \cdot \frac{1}{\left(\frac{2s}{2}\right)^2 + 1} \][/tex]
Therefore, we simplify to:
[tex]\[ \frac{4s}{4s^2 + 1} = s \cdot \frac{1}{(2s)^2 + 1} \][/tex]
We now recognize that this is in the form [tex]\( s \cdot \frac{1}{s^2 + \alpha^2} \)[/tex], where [tex]\(\alpha = 1/2\)[/tex].
Recall the inverse Laplace transform for the standard form:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \alpha^2}\right) = \cos(\alpha t) \][/tex]
In our case, [tex]\(\alpha = \frac{1}{2}\)[/tex], so we have:
[tex]\[ L^{-1}\left(\frac{s}{s^2 + \left(\frac{1}{2}\right)^2}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
So, the inverse Laplace transform is:
[tex]\[ L^{-1}\left(\frac{4s}{4s^2 + 1}\right) = \cos\left(\frac{1}{2}t\right) \][/tex]
Thus, the solution is:
[tex]\[ \boxed{\cos\left(\frac{1}{2}t\right)} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.