Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

If [tex][tex]$a_{n+1} = 2a_n$[/tex][/tex] and [tex][tex]$a_1 = 3$[/tex][/tex], find the values of [tex][tex]$a_2$[/tex][/tex] and [tex][tex]$a_3$[/tex][/tex].

Sagot :

Let's start by analyzing the given sequence defined by the recurrence relation [tex]\( a_{n+1} = 2a_n \)[/tex] with the initial term [tex]\( a_1 = 3 \)[/tex].

1. Finding [tex]\( a_2 \)[/tex]:
We know that [tex]\( a_2 \)[/tex] is the next term after [tex]\( a_1 \)[/tex]. According to the recurrence relation, [tex]\( a_{n+1} = 2a_n \)[/tex]. For [tex]\( n = 1 \)[/tex],
[tex]\[ a_2 = 2a_1 \][/tex]
Substituting [tex]\( a_1 \)[/tex] with 3,
[tex]\[ a_2 = 2 \cdot 3 = 6 \][/tex]

2. Finding [tex]\( a_3 \)[/tex]:
Now, we find [tex]\( a_3 \)[/tex], which is the term following [tex]\( a_2 \)[/tex]. Again, using the recurrence relation [tex]\( a_{n+1} = 2a_n \)[/tex]. For [tex]\( n = 2 \)[/tex],
[tex]\[ a_3 = 2a_2 \][/tex]
Substituting [tex]\( a_2 \)[/tex] with the value we just found (6),
[tex]\[ a_3 = 2 \cdot 6 = 12 \][/tex]

Therefore, the values of [tex]\( a_2 \)[/tex] and [tex]\( a_3 \)[/tex] are [tex]\( 6 \)[/tex] and [tex]\( 12 \)[/tex] respectively.