Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which function best models the population of butterflies [tex]\( x \)[/tex] years from the first measurement, we start by considering the given conditions:
- Initial population ([tex]\( P_{0} \)[/tex]): 2000 butterflies
- Final population ([tex]\( P_{f} \)[/tex]): 2800 butterflies
- Time span ([tex]\( t \)[/tex]): 7 years
We need to evaluate each function and see which one produces values that reasonably match the population growth from 2000 to 2800 over the 7-year period.
### Option A: [tex]\( f(x) = 2000 \left( 1 + 0.4 \right)^{\frac{x}{7}} \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + 0.4 \right)^{\frac{1}{7}} \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.049 \][/tex]
[tex]\[ f(1) \approx 2098.483 \][/tex]
### Option B: [tex]\( f(x) = 2000 \left( 1 + 0.4^7 \right)^x \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + 0.4^7 \right)^1 \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.00164 \][/tex]
[tex]\[ f(1) \approx 2003.2768 \][/tex]
### Option C: [tex]\( f(x) = 2000 \left( 1 + \frac{0.4}{7} \right)^x \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + \frac{0.4}{7} \right)^1 \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.05714 \][/tex]
[tex]\[ f(1) \approx 2114.286 \][/tex]
### Option D: [tex]\( f(x) = 2000 \left( 1 + \frac{0.4}{7} \right)^{7x} \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + \frac{0.4}{7} \right)^7 \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.475 \][/tex]
[tex]\[ f(1) \approx 2950.977 \][/tex]
### Conclusion:
Given that the butterfly population grows from 2000 to 2800 over 7 years, we are looking for a model that captures a significant increase over time. From our evaluations:
- Option A: [tex]\( \approx 2098.483 \)[/tex]
- Option B: [tex]\( \approx 2003.2768 \)[/tex]
- Option C: [tex]\( \approx 2114.286 \)[/tex]
- Option D: [tex]\( \approx 2950.977 \)[/tex]
Model [tex]\( D \)[/tex] estimates a final population of approximately 2950.977, which is the closest to the actual final population of 2800. Therefore, the best function that models the population is:
[tex]\[ f(x) = 2000 \left( 1 + \frac{0.4}{7} \right)^{7x} \][/tex]
- Initial population ([tex]\( P_{0} \)[/tex]): 2000 butterflies
- Final population ([tex]\( P_{f} \)[/tex]): 2800 butterflies
- Time span ([tex]\( t \)[/tex]): 7 years
We need to evaluate each function and see which one produces values that reasonably match the population growth from 2000 to 2800 over the 7-year period.
### Option A: [tex]\( f(x) = 2000 \left( 1 + 0.4 \right)^{\frac{x}{7}} \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + 0.4 \right)^{\frac{1}{7}} \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.049 \][/tex]
[tex]\[ f(1) \approx 2098.483 \][/tex]
### Option B: [tex]\( f(x) = 2000 \left( 1 + 0.4^7 \right)^x \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + 0.4^7 \right)^1 \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.00164 \][/tex]
[tex]\[ f(1) \approx 2003.2768 \][/tex]
### Option C: [tex]\( f(x) = 2000 \left( 1 + \frac{0.4}{7} \right)^x \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + \frac{0.4}{7} \right)^1 \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.05714 \][/tex]
[tex]\[ f(1) \approx 2114.286 \][/tex]
### Option D: [tex]\( f(x) = 2000 \left( 1 + \frac{0.4}{7} \right)^{7x} \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + \frac{0.4}{7} \right)^7 \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.475 \][/tex]
[tex]\[ f(1) \approx 2950.977 \][/tex]
### Conclusion:
Given that the butterfly population grows from 2000 to 2800 over 7 years, we are looking for a model that captures a significant increase over time. From our evaluations:
- Option A: [tex]\( \approx 2098.483 \)[/tex]
- Option B: [tex]\( \approx 2003.2768 \)[/tex]
- Option C: [tex]\( \approx 2114.286 \)[/tex]
- Option D: [tex]\( \approx 2950.977 \)[/tex]
Model [tex]\( D \)[/tex] estimates a final population of approximately 2950.977, which is the closest to the actual final population of 2800. Therefore, the best function that models the population is:
[tex]\[ f(x) = 2000 \left( 1 + \frac{0.4}{7} \right)^{7x} \][/tex]
Answer:
A. [tex] f(x) = 2000(1 + 0.4)^{\frac{1}{7}x} [/tex]
Step-by-step explanation:
The number of years we know about is 7, so x = 7.
[tex] f(x) = 2000(1 + 0.4)^{\frac{1}{7}x} [/tex]
[tex] f(x) = 2000(1.4)^{\frac{1}{7} \times 7} [/tex]
[tex] f(x) = 2000(1.4)^{1} [/tex]
[tex] f(x) = 2000(1.4) [/tex]
[tex] f(x) = 2800 [/tex]
Answer: Choice A.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.