Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To model the monthly growth rate of a rabbit population, we need to start with the given information that the population initially is 25 rabbits and is increasing at a rate of 20% per year.
### Step-by-Step Solution:
1. Initial Population:
Let the initial population, [tex]\( P_0 \)[/tex], be 25 rabbits.
2. Annual Growth Rate:
The given annual growth rate is 20%, which can be expressed as a decimal:
[tex]\[ r_{\text{annual}} = 0.20 \][/tex]
3. Monthly Growth Rate:
To find the monthly growth rate, we need to convert the annual growth rate to a monthly equivalent. The formula to convert an annual growth rate [tex]\( r_{\text{annual}} \)[/tex] to a monthly growth rate [tex]\( r_{\text{monthly}} \)[/tex] is:
[tex]\[ (1 + r_{\text{annual}})^{\frac{1}{12}} - 1 \][/tex]
Given the annual growth rate of 20%, we calculate:
[tex]\[ r_{\text{monthly}} = (1 + 0.20)^{\frac{1}{12}} - 1 \][/tex]
This calculation yields:
[tex]\[ r_{\text{monthly}} \approx 0.01531 \][/tex]
4. Model for the Population After [tex]\( t \)[/tex] Years:
The population growth model that incorporates the monthly growth rate is given by:
[tex]\[ P(t) = P_0 (1 + r_{\text{monthly}})^{12t} \][/tex]
For our given data, this can be expressed as:
[tex]\[ P(t) = 25 (1.01531)^{12t} \][/tex]
5. Validate the Function:
We check the initial condition, i.e., at [tex]\( t = 0 \)[/tex]:
[tex]\[ P(0) = 25 (1.01531)^{12 \times 0} = 25 \times 1 = 25 \][/tex]
which confirms that our initial population is correct.
### Conclusion:
Based on the steps above, the correct function that models the monthly growth rate over [tex]\( t \)[/tex] years is:
[tex]\[ \boxed{y = 25(1.01531)^{12t}} \][/tex]
However, given the options provided and interpreting [tex]\( t \)[/tex] as the number of months (since yearly growth [tex]\( t \)[/tex] was ultimately scaled to match monthly compounding directly), the final answer should be:
[tex]\[ \boxed{y = 25(1.01531)^t} \][/tex]
So, the correct option from the given choices is:
[tex]\[ D. \ y=25(1.01531)^{t} \][/tex]
### Step-by-Step Solution:
1. Initial Population:
Let the initial population, [tex]\( P_0 \)[/tex], be 25 rabbits.
2. Annual Growth Rate:
The given annual growth rate is 20%, which can be expressed as a decimal:
[tex]\[ r_{\text{annual}} = 0.20 \][/tex]
3. Monthly Growth Rate:
To find the monthly growth rate, we need to convert the annual growth rate to a monthly equivalent. The formula to convert an annual growth rate [tex]\( r_{\text{annual}} \)[/tex] to a monthly growth rate [tex]\( r_{\text{monthly}} \)[/tex] is:
[tex]\[ (1 + r_{\text{annual}})^{\frac{1}{12}} - 1 \][/tex]
Given the annual growth rate of 20%, we calculate:
[tex]\[ r_{\text{monthly}} = (1 + 0.20)^{\frac{1}{12}} - 1 \][/tex]
This calculation yields:
[tex]\[ r_{\text{monthly}} \approx 0.01531 \][/tex]
4. Model for the Population After [tex]\( t \)[/tex] Years:
The population growth model that incorporates the monthly growth rate is given by:
[tex]\[ P(t) = P_0 (1 + r_{\text{monthly}})^{12t} \][/tex]
For our given data, this can be expressed as:
[tex]\[ P(t) = 25 (1.01531)^{12t} \][/tex]
5. Validate the Function:
We check the initial condition, i.e., at [tex]\( t = 0 \)[/tex]:
[tex]\[ P(0) = 25 (1.01531)^{12 \times 0} = 25 \times 1 = 25 \][/tex]
which confirms that our initial population is correct.
### Conclusion:
Based on the steps above, the correct function that models the monthly growth rate over [tex]\( t \)[/tex] years is:
[tex]\[ \boxed{y = 25(1.01531)^{12t}} \][/tex]
However, given the options provided and interpreting [tex]\( t \)[/tex] as the number of months (since yearly growth [tex]\( t \)[/tex] was ultimately scaled to match monthly compounding directly), the final answer should be:
[tex]\[ \boxed{y = 25(1.01531)^t} \][/tex]
So, the correct option from the given choices is:
[tex]\[ D. \ y=25(1.01531)^{t} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.