Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the perimeter of a rectangle when given the expressions for its two adjacent sides, we'll follow these steps in a detailed manner.
### Step 1: Identify the given expressions for the sides.
The two adjacent sides of the rectangle are given as:
1. [tex]\( a = 3x^2 - 2y^2 \)[/tex]
2. [tex]\( b = x^2 + 3xy \)[/tex]
### Step 2: Recall the formula for the perimeter of a rectangle.
For a rectangle, the perimeter [tex]\( P \)[/tex] is calculated using the formula:
[tex]\[ P = 2(a + b) \][/tex]
### Step 3: Substitute the given expressions into the formula.
Substituting [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the formula for the perimeter:
[tex]\[ P = 2((3x^2 - 2y^2) + (x^2 + 3xy)) \][/tex]
### Step 4: Simplify the expression inside the parentheses.
First, combine like terms:
[tex]\[ (3x^2 - 2y^2) + (x^2 + 3xy) = 3x^2 + x^2 - 2y^2 + 3xy = 4x^2 + 3xy - 2y^2 \][/tex]
### Step 5: Multiply by 2 to find the perimeter.
Finally, multiply the simplified expression by 2:
[tex]\[ P = 2(4x^2 + 3xy - 2y^2) \][/tex]
### Step 6: Distribute the 2 across the terms inside the parentheses.
[tex]\[ P = 2 \cdot 4x^2 + 2 \cdot 3xy - 2 \cdot 2y^2 \][/tex]
[tex]\[ P = 8x^2 + 6xy - 4y^2 \][/tex]
### Conclusion
Therefore, the perimeter of the rectangle, given the sides [tex]\( 3x^2 - 2y^2 \)[/tex] and [tex]\( x^2 + 3xy \)[/tex], is:
[tex]\[ P = 8x^2 + 6xy - 4y^2 \][/tex]
### Step 1: Identify the given expressions for the sides.
The two adjacent sides of the rectangle are given as:
1. [tex]\( a = 3x^2 - 2y^2 \)[/tex]
2. [tex]\( b = x^2 + 3xy \)[/tex]
### Step 2: Recall the formula for the perimeter of a rectangle.
For a rectangle, the perimeter [tex]\( P \)[/tex] is calculated using the formula:
[tex]\[ P = 2(a + b) \][/tex]
### Step 3: Substitute the given expressions into the formula.
Substituting [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the formula for the perimeter:
[tex]\[ P = 2((3x^2 - 2y^2) + (x^2 + 3xy)) \][/tex]
### Step 4: Simplify the expression inside the parentheses.
First, combine like terms:
[tex]\[ (3x^2 - 2y^2) + (x^2 + 3xy) = 3x^2 + x^2 - 2y^2 + 3xy = 4x^2 + 3xy - 2y^2 \][/tex]
### Step 5: Multiply by 2 to find the perimeter.
Finally, multiply the simplified expression by 2:
[tex]\[ P = 2(4x^2 + 3xy - 2y^2) \][/tex]
### Step 6: Distribute the 2 across the terms inside the parentheses.
[tex]\[ P = 2 \cdot 4x^2 + 2 \cdot 3xy - 2 \cdot 2y^2 \][/tex]
[tex]\[ P = 8x^2 + 6xy - 4y^2 \][/tex]
### Conclusion
Therefore, the perimeter of the rectangle, given the sides [tex]\( 3x^2 - 2y^2 \)[/tex] and [tex]\( x^2 + 3xy \)[/tex], is:
[tex]\[ P = 8x^2 + 6xy - 4y^2 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.