Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve the problem step-by-step:
1. Understand the problem:
- We need to find the height of a cylindrical fuel tank that holds [tex]\( V \)[/tex] cubic meters of fuel.
- The diameter of the tank is [tex]\( d \)[/tex] meters.
2. Recall the formula for the volume of a cylinder:
- The volume [tex]\( V \)[/tex] of a cylinder is given by the formula:
[tex]\[ V = \pi r^2 h \][/tex]
where [tex]\( r \)[/tex] is the radius and [tex]\( h \)[/tex] is the height of the cylinder.
3. Express the radius in terms of the diameter:
- The radius [tex]\( r \)[/tex] is half of the diameter [tex]\( d \)[/tex]:
[tex]\[ r = \frac{d}{2} \][/tex]
4. Substitute the radius into the volume formula:
- Substitute [tex]\( r = \frac{d}{2} \)[/tex] into the volume formula to get:
[tex]\[ V = \pi \left( \frac{d}{2} \right)^2 h \][/tex]
5. Simplify the expression:
- Square the radius term:
[tex]\[ V = \pi \left( \frac{d^2}{4} \right) h \][/tex]
- This simplifies to:
[tex]\[ V = \frac{\pi d^2}{4} h \][/tex]
6. Solve for the height [tex]\( h \)[/tex]:
- To isolate [tex]\( h \)[/tex], multiply both sides of the equation by 4 and then divide by [tex]\( \pi d^2 \)[/tex]:
[tex]\[ h = \frac{4V}{\pi d^2} \][/tex]
Therefore, the height of the tank is:
[tex]\[ \frac{4V}{\pi d^2} \][/tex]
So, the correct answer is option E: [tex]\(\frac{4V}{\pi d^2}\)[/tex].
1. Understand the problem:
- We need to find the height of a cylindrical fuel tank that holds [tex]\( V \)[/tex] cubic meters of fuel.
- The diameter of the tank is [tex]\( d \)[/tex] meters.
2. Recall the formula for the volume of a cylinder:
- The volume [tex]\( V \)[/tex] of a cylinder is given by the formula:
[tex]\[ V = \pi r^2 h \][/tex]
where [tex]\( r \)[/tex] is the radius and [tex]\( h \)[/tex] is the height of the cylinder.
3. Express the radius in terms of the diameter:
- The radius [tex]\( r \)[/tex] is half of the diameter [tex]\( d \)[/tex]:
[tex]\[ r = \frac{d}{2} \][/tex]
4. Substitute the radius into the volume formula:
- Substitute [tex]\( r = \frac{d}{2} \)[/tex] into the volume formula to get:
[tex]\[ V = \pi \left( \frac{d}{2} \right)^2 h \][/tex]
5. Simplify the expression:
- Square the radius term:
[tex]\[ V = \pi \left( \frac{d^2}{4} \right) h \][/tex]
- This simplifies to:
[tex]\[ V = \frac{\pi d^2}{4} h \][/tex]
6. Solve for the height [tex]\( h \)[/tex]:
- To isolate [tex]\( h \)[/tex], multiply both sides of the equation by 4 and then divide by [tex]\( \pi d^2 \)[/tex]:
[tex]\[ h = \frac{4V}{\pi d^2} \][/tex]
Therefore, the height of the tank is:
[tex]\[ \frac{4V}{\pi d^2} \][/tex]
So, the correct answer is option E: [tex]\(\frac{4V}{\pi d^2}\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.