Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the problem step-by-step:
1. Understand the problem:
- We need to find the height of a cylindrical fuel tank that holds [tex]\( V \)[/tex] cubic meters of fuel.
- The diameter of the tank is [tex]\( d \)[/tex] meters.
2. Recall the formula for the volume of a cylinder:
- The volume [tex]\( V \)[/tex] of a cylinder is given by the formula:
[tex]\[ V = \pi r^2 h \][/tex]
where [tex]\( r \)[/tex] is the radius and [tex]\( h \)[/tex] is the height of the cylinder.
3. Express the radius in terms of the diameter:
- The radius [tex]\( r \)[/tex] is half of the diameter [tex]\( d \)[/tex]:
[tex]\[ r = \frac{d}{2} \][/tex]
4. Substitute the radius into the volume formula:
- Substitute [tex]\( r = \frac{d}{2} \)[/tex] into the volume formula to get:
[tex]\[ V = \pi \left( \frac{d}{2} \right)^2 h \][/tex]
5. Simplify the expression:
- Square the radius term:
[tex]\[ V = \pi \left( \frac{d^2}{4} \right) h \][/tex]
- This simplifies to:
[tex]\[ V = \frac{\pi d^2}{4} h \][/tex]
6. Solve for the height [tex]\( h \)[/tex]:
- To isolate [tex]\( h \)[/tex], multiply both sides of the equation by 4 and then divide by [tex]\( \pi d^2 \)[/tex]:
[tex]\[ h = \frac{4V}{\pi d^2} \][/tex]
Therefore, the height of the tank is:
[tex]\[ \frac{4V}{\pi d^2} \][/tex]
So, the correct answer is option E: [tex]\(\frac{4V}{\pi d^2}\)[/tex].
1. Understand the problem:
- We need to find the height of a cylindrical fuel tank that holds [tex]\( V \)[/tex] cubic meters of fuel.
- The diameter of the tank is [tex]\( d \)[/tex] meters.
2. Recall the formula for the volume of a cylinder:
- The volume [tex]\( V \)[/tex] of a cylinder is given by the formula:
[tex]\[ V = \pi r^2 h \][/tex]
where [tex]\( r \)[/tex] is the radius and [tex]\( h \)[/tex] is the height of the cylinder.
3. Express the radius in terms of the diameter:
- The radius [tex]\( r \)[/tex] is half of the diameter [tex]\( d \)[/tex]:
[tex]\[ r = \frac{d}{2} \][/tex]
4. Substitute the radius into the volume formula:
- Substitute [tex]\( r = \frac{d}{2} \)[/tex] into the volume formula to get:
[tex]\[ V = \pi \left( \frac{d}{2} \right)^2 h \][/tex]
5. Simplify the expression:
- Square the radius term:
[tex]\[ V = \pi \left( \frac{d^2}{4} \right) h \][/tex]
- This simplifies to:
[tex]\[ V = \frac{\pi d^2}{4} h \][/tex]
6. Solve for the height [tex]\( h \)[/tex]:
- To isolate [tex]\( h \)[/tex], multiply both sides of the equation by 4 and then divide by [tex]\( \pi d^2 \)[/tex]:
[tex]\[ h = \frac{4V}{\pi d^2} \][/tex]
Therefore, the height of the tank is:
[tex]\[ \frac{4V}{\pi d^2} \][/tex]
So, the correct answer is option E: [tex]\(\frac{4V}{\pi d^2}\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.