Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the domain and range of the function [tex]\( p(t) = 5 \sin(880 \cdot t) \)[/tex] within the given context, we follow these steps:
Domain:
1. The variable [tex]\( t \)[/tex] represents time in seconds after the tuning fork is struck.
2. Time cannot be negative in this context, as it is measured from the moment the tuning fork is struck.
Therefore, the domain of the function is:
[tex]\[ t \geq 0 \][/tex]
Range:
1. The function [tex]\( p(t) = 5 \sin(880 \cdot t) \)[/tex] is a sinusoidal function that oscillates.
2. The sine function, [tex]\(\sin(\theta)\)[/tex], varies between [tex]\(-1\)[/tex] and [tex]\(1\)[/tex].
3. Since it is multiplied by 5, the amplitude of [tex]\( p(t) \)[/tex] is [tex]\(5\)[/tex]. This means the minimum value of [tex]\( p(t) \)[/tex] occurs when [tex]\(\sin(880 \cdot t) = -1\)[/tex] and the maximum value occurs when [tex]\(\sin(880 \cdot t) = 1\)[/tex].
Therefore, the range of the function is:
[tex]\[ -5 \leq p(t) \leq 5 \][/tex]
Putting it all together, the answers are:
- The domain of the function is [tex]\( t \geq \)[/tex] [tex]\(0\)[/tex].
- The range of the function is [tex]\( -5 \leq p(t) \leq \)[/tex] [tex]\(5\)[/tex].
So the complete answer to the question is:
- The domain of the function is [tex]\( t \geq \)[/tex] [tex]\(0\)[/tex]
- The range of the function is [tex]\( -5 \leq p(t) \leq \)[/tex] [tex]\(5\)[/tex]
Domain:
1. The variable [tex]\( t \)[/tex] represents time in seconds after the tuning fork is struck.
2. Time cannot be negative in this context, as it is measured from the moment the tuning fork is struck.
Therefore, the domain of the function is:
[tex]\[ t \geq 0 \][/tex]
Range:
1. The function [tex]\( p(t) = 5 \sin(880 \cdot t) \)[/tex] is a sinusoidal function that oscillates.
2. The sine function, [tex]\(\sin(\theta)\)[/tex], varies between [tex]\(-1\)[/tex] and [tex]\(1\)[/tex].
3. Since it is multiplied by 5, the amplitude of [tex]\( p(t) \)[/tex] is [tex]\(5\)[/tex]. This means the minimum value of [tex]\( p(t) \)[/tex] occurs when [tex]\(\sin(880 \cdot t) = -1\)[/tex] and the maximum value occurs when [tex]\(\sin(880 \cdot t) = 1\)[/tex].
Therefore, the range of the function is:
[tex]\[ -5 \leq p(t) \leq 5 \][/tex]
Putting it all together, the answers are:
- The domain of the function is [tex]\( t \geq \)[/tex] [tex]\(0\)[/tex].
- The range of the function is [tex]\( -5 \leq p(t) \leq \)[/tex] [tex]\(5\)[/tex].
So the complete answer to the question is:
- The domain of the function is [tex]\( t \geq \)[/tex] [tex]\(0\)[/tex]
- The range of the function is [tex]\( -5 \leq p(t) \leq \)[/tex] [tex]\(5\)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.