Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the probability that the child will have color-deficient vision given the parent genotypes [tex]\(X^R X^r \times X^r Y\)[/tex], we can use a Punnett square to visually represent the possible genetic combinations of the offspring.
### 1. Set Up Parent Genotypes
- Mother: [tex]\(X^R X^r\)[/tex]
- Father: [tex]\(X^r Y\)[/tex]
### 2. Create Gametes
Each parent produces gametes (sperm or eggs) that carry only one of their two sex chromosomes.
- Mother’s possible gametes: [tex]\(X^R\)[/tex] and [tex]\(X^r\)[/tex]
- Father’s possible gametes: [tex]\(X^r\)[/tex] and [tex]\(Y\)[/tex]
### 3. Construct the Punnett Square
We will pair each of the mother’s gametes with each of the father’s gametes to see all possible outcomes for the offspring.
| Parent \ Partner Gametes | [tex]\(X^r\)[/tex] (Father) | [tex]\(Y\)[/tex] (Father) |
|--------------------------|-------------------|-------------------|
| [tex]\(X^R\)[/tex] (Mother) | [tex]\(X^RX^r\)[/tex] | [tex]\(X^R Y\)[/tex] |
| [tex]\(X^r\)[/tex] (Mother) | [tex]\(X^rX^r\)[/tex] | [tex]\(X^r Y\)[/tex] |
### 4. Determine the Phenotypes
We look at each combination to determine if the child has color-deficient vision.
- [tex]\(X^RX^r\)[/tex]: The child is a carrier female but has normal vision because [tex]\(X^R\)[/tex] is dominant.
- [tex]\(X^R Y\)[/tex]: The child is a normal-vision male because [tex]\(X^R\)[/tex] is dominant.
- [tex]\(X^rX^r\)[/tex]: The child is a color-deficient female because both [tex]\(X^r\)[/tex] alleles carry the recessive trait.
- [tex]\(X^r Y\)[/tex]: The child is a color-deficient male because [tex]\(X^r\)[/tex] carries the recessive trait and there is no corresponding dominant allele on the Y chromosome.
### 5. Calculate the Probability
We summarize the outcomes:
- Total possible outcomes: 4 ([tex]\(X^RX^r\)[/tex], [tex]\(X^R Y\)[/tex], [tex]\(X^rX^r\)[/tex], [tex]\(X^r Y\)[/tex])
- Color-deficient outcomes: 2 ([tex]\(X^rX^r\)[/tex], [tex]\(X^r Y\)[/tex])
Therefore, the probability that a child will have color-deficient vision is the number of color-deficient outcomes divided by the total number of outcomes.
[tex]\[ \text{Probability} = \frac{\text{Number of color-deficient outcomes}}{\text{Total number of outcomes}} = \frac{2}{4} = 0.5 \][/tex]
### 6. Conclusion
The probability that the child will have color-deficient vision is [tex]\(0.50\)[/tex]. Therefore, the correct answer is:
D. 0.50
### 1. Set Up Parent Genotypes
- Mother: [tex]\(X^R X^r\)[/tex]
- Father: [tex]\(X^r Y\)[/tex]
### 2. Create Gametes
Each parent produces gametes (sperm or eggs) that carry only one of their two sex chromosomes.
- Mother’s possible gametes: [tex]\(X^R\)[/tex] and [tex]\(X^r\)[/tex]
- Father’s possible gametes: [tex]\(X^r\)[/tex] and [tex]\(Y\)[/tex]
### 3. Construct the Punnett Square
We will pair each of the mother’s gametes with each of the father’s gametes to see all possible outcomes for the offspring.
| Parent \ Partner Gametes | [tex]\(X^r\)[/tex] (Father) | [tex]\(Y\)[/tex] (Father) |
|--------------------------|-------------------|-------------------|
| [tex]\(X^R\)[/tex] (Mother) | [tex]\(X^RX^r\)[/tex] | [tex]\(X^R Y\)[/tex] |
| [tex]\(X^r\)[/tex] (Mother) | [tex]\(X^rX^r\)[/tex] | [tex]\(X^r Y\)[/tex] |
### 4. Determine the Phenotypes
We look at each combination to determine if the child has color-deficient vision.
- [tex]\(X^RX^r\)[/tex]: The child is a carrier female but has normal vision because [tex]\(X^R\)[/tex] is dominant.
- [tex]\(X^R Y\)[/tex]: The child is a normal-vision male because [tex]\(X^R\)[/tex] is dominant.
- [tex]\(X^rX^r\)[/tex]: The child is a color-deficient female because both [tex]\(X^r\)[/tex] alleles carry the recessive trait.
- [tex]\(X^r Y\)[/tex]: The child is a color-deficient male because [tex]\(X^r\)[/tex] carries the recessive trait and there is no corresponding dominant allele on the Y chromosome.
### 5. Calculate the Probability
We summarize the outcomes:
- Total possible outcomes: 4 ([tex]\(X^RX^r\)[/tex], [tex]\(X^R Y\)[/tex], [tex]\(X^rX^r\)[/tex], [tex]\(X^r Y\)[/tex])
- Color-deficient outcomes: 2 ([tex]\(X^rX^r\)[/tex], [tex]\(X^r Y\)[/tex])
Therefore, the probability that a child will have color-deficient vision is the number of color-deficient outcomes divided by the total number of outcomes.
[tex]\[ \text{Probability} = \frac{\text{Number of color-deficient outcomes}}{\text{Total number of outcomes}} = \frac{2}{4} = 0.5 \][/tex]
### 6. Conclusion
The probability that the child will have color-deficient vision is [tex]\(0.50\)[/tex]. Therefore, the correct answer is:
D. 0.50
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.