Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's go through the problem step by step.
1. Sum of Angles in a Triangle:
It's a fundamental property of triangles that the sum of their interior angles is always [tex]\( 180^\circ \)[/tex]. We can express this as:
[tex]\[ m \angle A + m \angle B + m \angle C = 180^\circ \][/tex]
2. Given Equation:
We are given an equation related to one of the angles in the triangle:
[tex]\[ 7x = 84 \][/tex]
3. Solving for [tex]\( x \)[/tex]:
To find [tex]\( x \)[/tex], we use the division property of equality. We divide both sides of the equation by 7:
[tex]\[ x = \frac{84}{7} \][/tex]
Simplifying this gives:
[tex]\[ x = 12 \][/tex]
4. Finding the Measure of Angle [tex]\( A \)[/tex]:
We are told to use the substitution property to find the measure of angle [tex]\( A \)[/tex]. According to the problem, we need to calculate:
[tex]\[ m \angle A = 6x \][/tex]
Substituting [tex]\( x = 12 \)[/tex] into the expression:
[tex]\[ m \angle A = 6 \times 12 \][/tex]
Simplifying this gives:
[tex]\[ m \angle A = 72^\circ \][/tex]
So, by following these steps, we find that the measure of angle [tex]\( A \)[/tex] is [tex]\( 72^\circ \)[/tex], and the sum of the angles in the triangle is indeed [tex]\( 180^\circ \)[/tex].
1. Sum of Angles in a Triangle:
It's a fundamental property of triangles that the sum of their interior angles is always [tex]\( 180^\circ \)[/tex]. We can express this as:
[tex]\[ m \angle A + m \angle B + m \angle C = 180^\circ \][/tex]
2. Given Equation:
We are given an equation related to one of the angles in the triangle:
[tex]\[ 7x = 84 \][/tex]
3. Solving for [tex]\( x \)[/tex]:
To find [tex]\( x \)[/tex], we use the division property of equality. We divide both sides of the equation by 7:
[tex]\[ x = \frac{84}{7} \][/tex]
Simplifying this gives:
[tex]\[ x = 12 \][/tex]
4. Finding the Measure of Angle [tex]\( A \)[/tex]:
We are told to use the substitution property to find the measure of angle [tex]\( A \)[/tex]. According to the problem, we need to calculate:
[tex]\[ m \angle A = 6x \][/tex]
Substituting [tex]\( x = 12 \)[/tex] into the expression:
[tex]\[ m \angle A = 6 \times 12 \][/tex]
Simplifying this gives:
[tex]\[ m \angle A = 72^\circ \][/tex]
So, by following these steps, we find that the measure of angle [tex]\( A \)[/tex] is [tex]\( 72^\circ \)[/tex], and the sum of the angles in the triangle is indeed [tex]\( 180^\circ \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.