Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the domain and range of the function [tex]\( f(x) = 2^{x+1} \)[/tex], we need to analyze the behavior and properties of exponential functions.
### Domain
For the given function [tex]\( f(x) = 2^{x+1} \)[/tex]:
1. Exponential Functions Definition:
- Exponential functions are defined for all real numbers. This means that no matter what value of [tex]\( x \)[/tex] we choose, [tex]\( 2^{x+1} \)[/tex] is always defined and results in a real number.
2. Conclusion for Domain:
- Therefore, the domain of [tex]\( f(x) = 2^{x+1} \)[/tex] includes all real numbers.
[tex]\[ \text{Domain} = (-\infty, \infty) \][/tex]
### Range
For the given function [tex]\( f(x) = 2^{x+1} \)[/tex]:
1. Behavior of Exponential Functions:
- The base of the exponential function here is 2, which is greater than 1. Exponential growth functions of the form [tex]\( a^x \)[/tex] (where [tex]\( a > 1 \)[/tex]) always yield positive results for any real number [tex]\( x \)[/tex].
2. Positive Real Output:
- The function [tex]\( 2^{x+1} \)[/tex] will never yield zero or negative values. As [tex]\( x \)[/tex] gets very large (positive), [tex]\( 2^{x+1} \)[/tex] approaches infinity. As [tex]\( x \)[/tex] gets very small (negative), [tex]\( 2^{x+1} \)[/tex] approaches zero but never actually reaches zero.
3. Conclusion for Range:
- Thus, the range of [tex]\( f(x) = 2^{x+1} \)[/tex] includes all positive real numbers.
[tex]\[ \text{Range} = (0, \infty) \][/tex]
### Final Answer
[tex]\[ \text{Domain:} \quad (-\infty, \infty) \][/tex]
[tex]\[ \text{Range:} \quad (0, \infty) \][/tex]
So, the correct domain and range for the function [tex]\( f(x) = 2^{x+1} \)[/tex] are:
[tex]\[ \boxed{\text{Domain: } (-\infty, \infty),\; \text{Range: } (0, \infty)} \][/tex]
### Domain
For the given function [tex]\( f(x) = 2^{x+1} \)[/tex]:
1. Exponential Functions Definition:
- Exponential functions are defined for all real numbers. This means that no matter what value of [tex]\( x \)[/tex] we choose, [tex]\( 2^{x+1} \)[/tex] is always defined and results in a real number.
2. Conclusion for Domain:
- Therefore, the domain of [tex]\( f(x) = 2^{x+1} \)[/tex] includes all real numbers.
[tex]\[ \text{Domain} = (-\infty, \infty) \][/tex]
### Range
For the given function [tex]\( f(x) = 2^{x+1} \)[/tex]:
1. Behavior of Exponential Functions:
- The base of the exponential function here is 2, which is greater than 1. Exponential growth functions of the form [tex]\( a^x \)[/tex] (where [tex]\( a > 1 \)[/tex]) always yield positive results for any real number [tex]\( x \)[/tex].
2. Positive Real Output:
- The function [tex]\( 2^{x+1} \)[/tex] will never yield zero or negative values. As [tex]\( x \)[/tex] gets very large (positive), [tex]\( 2^{x+1} \)[/tex] approaches infinity. As [tex]\( x \)[/tex] gets very small (negative), [tex]\( 2^{x+1} \)[/tex] approaches zero but never actually reaches zero.
3. Conclusion for Range:
- Thus, the range of [tex]\( f(x) = 2^{x+1} \)[/tex] includes all positive real numbers.
[tex]\[ \text{Range} = (0, \infty) \][/tex]
### Final Answer
[tex]\[ \text{Domain:} \quad (-\infty, \infty) \][/tex]
[tex]\[ \text{Range:} \quad (0, \infty) \][/tex]
So, the correct domain and range for the function [tex]\( f(x) = 2^{x+1} \)[/tex] are:
[tex]\[ \boxed{\text{Domain: } (-\infty, \infty),\; \text{Range: } (0, \infty)} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.