Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the equation [tex]\( 4^{2x-3} = 7^x + 2^{x+2} \)[/tex], let's break it down step by step:
1. Rewrite the bases with exponents:
[tex]\[ 4^{2x-3} = (2^2)^{2x-3} = 2^{4x-6} \][/tex]
Similarly, for the right-hand side:
[tex]\[ 2^{x+2} = 2^x \cdot 2^2 = 4 \cdot 2^x \][/tex]
So the equation becomes:
[tex]\[ 2^{4x-6} = 7^x + 4 \cdot 2^x \][/tex]
2. Analyze possible solutions:
This is a transcendental equation, which means it typically does not have a straightforward analytical solution like algebraic equations. Instead, we often need numerical methods to find approximate solutions or argue about possible solutions by substituting feasible numbers.
3. Substitute potential solutions:
Let's test a few values of [tex]\( x \)[/tex] to see if we can find a solution:
- Test [tex]\( x = 0 \)[/tex]:
[tex]\[ 2^{4(0)-6} = 2^{-6} = \frac{1}{2^6} = \frac{1}{64} \][/tex]
[tex]\[ 7^0 + 4 \cdot 2^0 = 1 + 4 = 5 \][/tex]
Clearly, [tex]\( \frac{1}{64} \ne 5 \)[/tex].
- Test [tex]\( x = 1 \)[/tex]:
[tex]\[ 2^{4(1)-6} = 2^{-2} = \frac{1}{2^2} = \frac{1}{4} \][/tex]
[tex]\[ 7^1 + 4 \cdot 2^1 = 7 + 8 = 15 \][/tex]
Again, [tex]\( \frac{1}{4} \ne 15 \)[/tex].
- Test [tex]\( x = 2 \)[/tex]:
[tex]\[ 2^{4(2)-6} = 2^2 = 4 \][/tex]
[tex]\[ 7^2 + 4 \cdot 2^2 = 49 + 16 = 65 \][/tex]
[tex]\( 4 \ne 65 \)[/tex].
- Test [tex]\( x = 3 \)[/tex]:
[tex]\[ 2^{4(3)-6} = 2^{12-6} = 2^6 = 64 \][/tex]
[tex]\[ 7^3 + 4 \cdot 2^3 = 343 + 4 \cdot 8 = 343 + 32 = 375 \][/tex]
[tex]\( 64 \ne 375 \)[/tex].
Given that simple values like 0, 1, 2, and 3 do not solve the equation, and the nature of the equation, we should generally expect that a transcendental equation like this will be best approached either graphically or with numerical methods (e.g., using a computer algebra system, iterative methods, or other numerical techniques).
Let's conclude by offering the observation that solving [tex]\( 2^{4x-6} = 7^x + 4 \cdot 2^x \)[/tex] exactly requires numerical methods due to its complexity. Graphically plotting [tex]\( y = 2^{4x-6} \)[/tex] and [tex]\( y = 7^x + 4 \cdot 2^x \)[/tex] would provide the intersection points, which provide the solutions for [tex]\( x \)[/tex]. From the attempts above, no simple analytical solution exists.
1. Rewrite the bases with exponents:
[tex]\[ 4^{2x-3} = (2^2)^{2x-3} = 2^{4x-6} \][/tex]
Similarly, for the right-hand side:
[tex]\[ 2^{x+2} = 2^x \cdot 2^2 = 4 \cdot 2^x \][/tex]
So the equation becomes:
[tex]\[ 2^{4x-6} = 7^x + 4 \cdot 2^x \][/tex]
2. Analyze possible solutions:
This is a transcendental equation, which means it typically does not have a straightforward analytical solution like algebraic equations. Instead, we often need numerical methods to find approximate solutions or argue about possible solutions by substituting feasible numbers.
3. Substitute potential solutions:
Let's test a few values of [tex]\( x \)[/tex] to see if we can find a solution:
- Test [tex]\( x = 0 \)[/tex]:
[tex]\[ 2^{4(0)-6} = 2^{-6} = \frac{1}{2^6} = \frac{1}{64} \][/tex]
[tex]\[ 7^0 + 4 \cdot 2^0 = 1 + 4 = 5 \][/tex]
Clearly, [tex]\( \frac{1}{64} \ne 5 \)[/tex].
- Test [tex]\( x = 1 \)[/tex]:
[tex]\[ 2^{4(1)-6} = 2^{-2} = \frac{1}{2^2} = \frac{1}{4} \][/tex]
[tex]\[ 7^1 + 4 \cdot 2^1 = 7 + 8 = 15 \][/tex]
Again, [tex]\( \frac{1}{4} \ne 15 \)[/tex].
- Test [tex]\( x = 2 \)[/tex]:
[tex]\[ 2^{4(2)-6} = 2^2 = 4 \][/tex]
[tex]\[ 7^2 + 4 \cdot 2^2 = 49 + 16 = 65 \][/tex]
[tex]\( 4 \ne 65 \)[/tex].
- Test [tex]\( x = 3 \)[/tex]:
[tex]\[ 2^{4(3)-6} = 2^{12-6} = 2^6 = 64 \][/tex]
[tex]\[ 7^3 + 4 \cdot 2^3 = 343 + 4 \cdot 8 = 343 + 32 = 375 \][/tex]
[tex]\( 64 \ne 375 \)[/tex].
Given that simple values like 0, 1, 2, and 3 do not solve the equation, and the nature of the equation, we should generally expect that a transcendental equation like this will be best approached either graphically or with numerical methods (e.g., using a computer algebra system, iterative methods, or other numerical techniques).
Let's conclude by offering the observation that solving [tex]\( 2^{4x-6} = 7^x + 4 \cdot 2^x \)[/tex] exactly requires numerical methods due to its complexity. Graphically plotting [tex]\( y = 2^{4x-6} \)[/tex] and [tex]\( y = 7^x + 4 \cdot 2^x \)[/tex] would provide the intersection points, which provide the solutions for [tex]\( x \)[/tex]. From the attempts above, no simple analytical solution exists.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.