Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve each question step-by-step.
### Question 6:
Given:
The quadratic polynomial is [tex]\( p(x) = 2x^2 - 7x + k \)[/tex].
It is given that the zeroes (roots) of the polynomial are reciprocal of each other.
Solution:
1. Let's denote the roots by [tex]\( \alpha \)[/tex] and [tex]\( \frac{1}{\alpha} \)[/tex].
2. For a quadratic polynomial [tex]\( ax^2 + bx + c \)[/tex], the product of the roots [tex]\(\alpha \cdot \frac{1}{\alpha}\)[/tex] is given by [tex]\(\frac{c}{a}\)[/tex].
Here, [tex]\( a = 2 \)[/tex] and [tex]\( c = k \)[/tex].
3. Therefore, the product of the roots is:
[tex]\[ \alpha \cdot \frac{1}{\alpha} = 1 = \frac{k}{2} \][/tex]
4. Solving for [tex]\( k \)[/tex]:
[tex]\[ 1 = \frac{k}{2} \implies k = 2 \][/tex]
So, the value of [tex]\( k \)[/tex] is [tex]\( 2 \)[/tex].
### Question 7:
Given:
The quadratic polynomial is [tex]\( x^2 + (a+1)x + b \)[/tex].
The zeroes (roots) of the polynomial are [tex]\( 2 \)[/tex] and [tex]\( -3 \)[/tex].
Solution:
1. For a quadratic polynomial [tex]\( x^2 + bx + c \)[/tex]:
- The sum of the roots is given by [tex]\( -\frac{b}{a} \)[/tex].
- The product of the roots is given by [tex]\( \frac{c}{a} \)[/tex].
Given roots are [tex]\( 2 \)[/tex] and [tex]\( -3 \)[/tex].
2. Sum of the roots:
[tex]\[ 2 + (-3) = -1 \][/tex]
The coefficient of [tex]\( x \)[/tex] here is [tex]\( a + 1 \)[/tex]. So, we have:
[tex]\[ a + 1 = -(-1) \implies a + 1 = 1 \implies a = 0 \][/tex]
3. Product of the roots:
[tex]\[ 2 \cdot (-3) = -6 \][/tex]
The constant term, [tex]\( b \)[/tex], is the product of the roots:
[tex]\[ b = -6 \][/tex]
So, the values are [tex]\( a = 0 \)[/tex] and [tex]\( b = -6 \)[/tex].
### Summary:
1. The value of [tex]\( k \)[/tex] is [tex]\( 2 \)[/tex].
2. The values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are [tex]\( 0 \)[/tex] and [tex]\( -6 \)[/tex], respectively.
### Question 6:
Given:
The quadratic polynomial is [tex]\( p(x) = 2x^2 - 7x + k \)[/tex].
It is given that the zeroes (roots) of the polynomial are reciprocal of each other.
Solution:
1. Let's denote the roots by [tex]\( \alpha \)[/tex] and [tex]\( \frac{1}{\alpha} \)[/tex].
2. For a quadratic polynomial [tex]\( ax^2 + bx + c \)[/tex], the product of the roots [tex]\(\alpha \cdot \frac{1}{\alpha}\)[/tex] is given by [tex]\(\frac{c}{a}\)[/tex].
Here, [tex]\( a = 2 \)[/tex] and [tex]\( c = k \)[/tex].
3. Therefore, the product of the roots is:
[tex]\[ \alpha \cdot \frac{1}{\alpha} = 1 = \frac{k}{2} \][/tex]
4. Solving for [tex]\( k \)[/tex]:
[tex]\[ 1 = \frac{k}{2} \implies k = 2 \][/tex]
So, the value of [tex]\( k \)[/tex] is [tex]\( 2 \)[/tex].
### Question 7:
Given:
The quadratic polynomial is [tex]\( x^2 + (a+1)x + b \)[/tex].
The zeroes (roots) of the polynomial are [tex]\( 2 \)[/tex] and [tex]\( -3 \)[/tex].
Solution:
1. For a quadratic polynomial [tex]\( x^2 + bx + c \)[/tex]:
- The sum of the roots is given by [tex]\( -\frac{b}{a} \)[/tex].
- The product of the roots is given by [tex]\( \frac{c}{a} \)[/tex].
Given roots are [tex]\( 2 \)[/tex] and [tex]\( -3 \)[/tex].
2. Sum of the roots:
[tex]\[ 2 + (-3) = -1 \][/tex]
The coefficient of [tex]\( x \)[/tex] here is [tex]\( a + 1 \)[/tex]. So, we have:
[tex]\[ a + 1 = -(-1) \implies a + 1 = 1 \implies a = 0 \][/tex]
3. Product of the roots:
[tex]\[ 2 \cdot (-3) = -6 \][/tex]
The constant term, [tex]\( b \)[/tex], is the product of the roots:
[tex]\[ b = -6 \][/tex]
So, the values are [tex]\( a = 0 \)[/tex] and [tex]\( b = -6 \)[/tex].
### Summary:
1. The value of [tex]\( k \)[/tex] is [tex]\( 2 \)[/tex].
2. The values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are [tex]\( 0 \)[/tex] and [tex]\( -6 \)[/tex], respectively.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.