At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's rewrite the expression [tex]\(24 a^5 b + 6 a b^2\)[/tex] by factoring out the greatest common factor.
We begin by identifying the common factors in each term:
The original expression is:
[tex]\[24 a^5 b + 6 a b^2\][/tex]
Step-by-step solution:
1. Identify Greatest Common Factor (GCF):
- The coefficients are 24 and 6. The GCF of these numbers is 6.
- The variable [tex]\(a\)[/tex] is common in both terms. The highest power of [tex]\(a\)[/tex] that can be factored out is [tex]\(a\)[/tex].
- The variable [tex]\(b\)[/tex] is also common in both terms. The highest power of [tex]\(b\)[/tex] that can be factored out is [tex]\(b\)[/tex].
2. Factor out the GCF:
We factor out [tex]\(6ab\)[/tex] from each term.
Original expression:
[tex]\[24 a^5 b + 6 a b^2\][/tex]
Factoring out [tex]\(6ab\)[/tex]:
[tex]\[6ab \left(\frac{24 a^5 b}{6ab} + \frac{6 a b^2}{6ab}\right)\][/tex]
3. Simplify inside the parentheses:
- For the first term:
[tex]\[\frac{24 a^5 b}{6ab} = 4a^{4}\][/tex]
Explanation:
- [tex]\(24 \div 6 = 4\)[/tex]
- [tex]\(a^5 \div a = a^{4}\)[/tex]
- [tex]\(b \div b = 1\)[/tex]
- For the second term:
[tex]\[\frac{6 a b^2}{6ab} = b\][/tex]
Explanation:
- [tex]\(6 \div 6 = 1\)[/tex]
- [tex]\(a \div a = 1\)[/tex]
- [tex]\(b^2 \div b = b\)[/tex]
Combining these, the simplified expression inside the parentheses is:
[tex]\[4a^4 + b\][/tex]
Thus, the factored form of the original expression is:
[tex]\[6ab \left(4a^4 + b\)\][/tex]
So, the correct rewritten form is:
[tex]\[6ab(4a^4 + b)\][/tex]
This matches option:
[tex]\[6ab(4a^4 + b)\][/tex]
Hence, the correct answer is:
[tex]\[6ab(4a^4 + b)\][/tex]
We begin by identifying the common factors in each term:
The original expression is:
[tex]\[24 a^5 b + 6 a b^2\][/tex]
Step-by-step solution:
1. Identify Greatest Common Factor (GCF):
- The coefficients are 24 and 6. The GCF of these numbers is 6.
- The variable [tex]\(a\)[/tex] is common in both terms. The highest power of [tex]\(a\)[/tex] that can be factored out is [tex]\(a\)[/tex].
- The variable [tex]\(b\)[/tex] is also common in both terms. The highest power of [tex]\(b\)[/tex] that can be factored out is [tex]\(b\)[/tex].
2. Factor out the GCF:
We factor out [tex]\(6ab\)[/tex] from each term.
Original expression:
[tex]\[24 a^5 b + 6 a b^2\][/tex]
Factoring out [tex]\(6ab\)[/tex]:
[tex]\[6ab \left(\frac{24 a^5 b}{6ab} + \frac{6 a b^2}{6ab}\right)\][/tex]
3. Simplify inside the parentheses:
- For the first term:
[tex]\[\frac{24 a^5 b}{6ab} = 4a^{4}\][/tex]
Explanation:
- [tex]\(24 \div 6 = 4\)[/tex]
- [tex]\(a^5 \div a = a^{4}\)[/tex]
- [tex]\(b \div b = 1\)[/tex]
- For the second term:
[tex]\[\frac{6 a b^2}{6ab} = b\][/tex]
Explanation:
- [tex]\(6 \div 6 = 1\)[/tex]
- [tex]\(a \div a = 1\)[/tex]
- [tex]\(b^2 \div b = b\)[/tex]
Combining these, the simplified expression inside the parentheses is:
[tex]\[4a^4 + b\][/tex]
Thus, the factored form of the original expression is:
[tex]\[6ab \left(4a^4 + b\)\][/tex]
So, the correct rewritten form is:
[tex]\[6ab(4a^4 + b)\][/tex]
This matches option:
[tex]\[6ab(4a^4 + b)\][/tex]
Hence, the correct answer is:
[tex]\[6ab(4a^4 + b)\][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.