Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the area of the path surrounding the circular garden, we need to follow these steps:
1. Calculate the radius of the garden and the path combined:
- The radius of the garden is given as 8 feet.
- The width of the path is given as 3 feet.
- Therefore, the total radius (garden plus path) is:
[tex]\[ \text{Total radius} = \text{radius of the garden} + \text{width of the path} = 8 \text{ feet} + 3 \text{ feet} = 11 \text{ feet} \][/tex]
2. Calculate the area of the garden:
- The area of a circle is given by the formula:
[tex]\[ \text{Area} = \pi \times (\text{radius})^2 \][/tex]
- For the garden with a radius of 8 feet:
[tex]\[ \text{Area of the garden} = \pi \times (8 \text{ feet})^2 = 3.14 \times 64 \text{ ft}^2 = 200.96 \text{ ft}^2 \][/tex]
3. Calculate the area of the garden plus the path:
- For the combined radius of 11 feet:
[tex]\[ \text{Area of the garden plus path} = \pi \times (11 \text{ feet})^2 = 3.14 \times 121 \text{ ft}^2 = 379.94 \text{ ft}^2 \][/tex]
4. Calculate the area of the path alone:
- The area of the path is given by the difference between the total area (garden plus path) and the area of the garden:
[tex]\[ \text{Area of the path} = \text{Area of the garden plus path} - \text{Area of the garden} = 379.94 \text{ ft}^2 - 200.96 \text{ ft}^2 = 178.98 \text{ ft}^2 \][/tex]
Therefore, the approximate area of the path alone is [tex]\( 178.98 \, \text{ft}^2 \)[/tex].
The correct answer is:
[tex]\[ \boxed{178.98 \, \text{ft}^2} \][/tex]
1. Calculate the radius of the garden and the path combined:
- The radius of the garden is given as 8 feet.
- The width of the path is given as 3 feet.
- Therefore, the total radius (garden plus path) is:
[tex]\[ \text{Total radius} = \text{radius of the garden} + \text{width of the path} = 8 \text{ feet} + 3 \text{ feet} = 11 \text{ feet} \][/tex]
2. Calculate the area of the garden:
- The area of a circle is given by the formula:
[tex]\[ \text{Area} = \pi \times (\text{radius})^2 \][/tex]
- For the garden with a radius of 8 feet:
[tex]\[ \text{Area of the garden} = \pi \times (8 \text{ feet})^2 = 3.14 \times 64 \text{ ft}^2 = 200.96 \text{ ft}^2 \][/tex]
3. Calculate the area of the garden plus the path:
- For the combined radius of 11 feet:
[tex]\[ \text{Area of the garden plus path} = \pi \times (11 \text{ feet})^2 = 3.14 \times 121 \text{ ft}^2 = 379.94 \text{ ft}^2 \][/tex]
4. Calculate the area of the path alone:
- The area of the path is given by the difference between the total area (garden plus path) and the area of the garden:
[tex]\[ \text{Area of the path} = \text{Area of the garden plus path} - \text{Area of the garden} = 379.94 \text{ ft}^2 - 200.96 \text{ ft}^2 = 178.98 \text{ ft}^2 \][/tex]
Therefore, the approximate area of the path alone is [tex]\( 178.98 \, \text{ft}^2 \)[/tex].
The correct answer is:
[tex]\[ \boxed{178.98 \, \text{ft}^2} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.