Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

How many times smaller is [tex][tex]$3.8 \times 10^3$[/tex][/tex] than [tex][tex]$6.422 \times 10^5$[/tex][/tex]?

A. 169
B. 59
C. 1.79
D. 0.59


Sagot :

Let's solve the problem step-by-step:

1. We are given two values: [tex]\(3.8 \times 10^3\)[/tex] and [tex]\(6.422 \times 10^5\)[/tex].
2. To determine how many times smaller [tex]\(3.8 \times 10^3\)[/tex] is compared to [tex]\(6.422 \times 10^5\)[/tex], we need to calculate the ratio of the larger value to the smaller value.
3. This means we divide [tex]\(6.422 \times 10^5\)[/tex] by [tex]\(3.8 \times 10^3\)[/tex].

[tex]\[ \text{Ratio} = \frac{6.422 \times 10^5}{3.8 \times 10^3} \][/tex]

4. After performing this division, we obtain the ratio.

The result of this calculation shows how many times [tex]\(3.8 \times 10^3\)[/tex] fits into [tex]\(6.422 \times 10^5\)[/tex].

Given that the result of this calculation is [tex]\(169.0\)[/tex], we conclude that [tex]\(3.8 \times 10^3\)[/tex] is 169 times smaller than [tex]\(6.422 \times 10^5\)[/tex].

Therefore, the correct option is:

[tex]\[ 169 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.