Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the value of [tex]\( b \)[/tex] in the quadratic function [tex]\( f(x) = 3x^2 + bx + 4 \)[/tex], we need to use the fact that the axis of symmetry of a parabola described by the equation [tex]\( ax^2 + bx + c \)[/tex] is given by the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
In our given function [tex]\( f(x) = 3x^2 + bx + 4 \)[/tex], the coefficient [tex]\( a \)[/tex] is 3. According to the problem, the axis of symmetry is [tex]\( x = \frac{3}{2} \)[/tex]. Let's set up the equation using the axis of symmetry formula:
[tex]\[ \frac{3}{2} = -\frac{b}{2 \cdot 3} \][/tex]
Simplify the denominator on the right hand side:
[tex]\[ \frac{3}{2} = -\frac{b}{6} \][/tex]
To solve for [tex]\( b \)[/tex], we multiply both sides of the equation by 6:
[tex]\[ 6 \cdot \frac{3}{2} = -b \][/tex]
[tex]\[ 3 \cdot 3 = -b \][/tex]
[tex]\[ 9 = -b \][/tex]
So, multiplying both sides by -1 gives:
[tex]\[ b = -9 \][/tex]
Hence, the value of [tex]\( b \)[/tex] is [tex]\( -9 \)[/tex].
The correct answer is:
[tex]\[ \boxed{-9} \][/tex]
[tex]\[ x = -\frac{b}{2a} \][/tex]
In our given function [tex]\( f(x) = 3x^2 + bx + 4 \)[/tex], the coefficient [tex]\( a \)[/tex] is 3. According to the problem, the axis of symmetry is [tex]\( x = \frac{3}{2} \)[/tex]. Let's set up the equation using the axis of symmetry formula:
[tex]\[ \frac{3}{2} = -\frac{b}{2 \cdot 3} \][/tex]
Simplify the denominator on the right hand side:
[tex]\[ \frac{3}{2} = -\frac{b}{6} \][/tex]
To solve for [tex]\( b \)[/tex], we multiply both sides of the equation by 6:
[tex]\[ 6 \cdot \frac{3}{2} = -b \][/tex]
[tex]\[ 3 \cdot 3 = -b \][/tex]
[tex]\[ 9 = -b \][/tex]
So, multiplying both sides by -1 gives:
[tex]\[ b = -9 \][/tex]
Hence, the value of [tex]\( b \)[/tex] is [tex]\( -9 \)[/tex].
The correct answer is:
[tex]\[ \boxed{-9} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.