Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze each statement one by one for a quadratic function of the form [tex]\( f(x) = a x^2 + bx + c \)[/tex] when [tex]\( b = 0 \)[/tex], simplifying the function to [tex]\( f(x) = ax^2 + c \)[/tex].
1. The graph will always have zero [tex]\( x \)[/tex]-intercepts.
- The [tex]\( x \)[/tex]-intercepts occur where the function [tex]\( f(x) = ax^2 + c \)[/tex] equals 0, i.e., [tex]\( ax^2 + c = 0 \)[/tex].
- Solving for [tex]\( x \)[/tex], we get [tex]\( x^2 = -\frac{c}{a} \)[/tex].
- The number of solutions depends on the values of [tex]\( a \)[/tex] and [tex]\( c \)[/tex]:
- If [tex]\( c = 0 \)[/tex], there is one solution: [tex]\( x = 0 \)[/tex].
- If [tex]\( a \)[/tex] and [tex]\( c \)[/tex] are both non-zero and have opposite signs (one positive and one negative), there are two real solutions.
- If [tex]\( a \)[/tex] and [tex]\( c \)[/tex] have the same signs (both positive or both negative), there are no real solutions.
- Therefore, the statement is false because the graph can have zero, one, or two [tex]\( x \)[/tex]-intercepts.
2. The function will always have a minimum.
- For [tex]\( f(x) = ax^2 + c \)[/tex], the direction the parabola opens depends on the sign of [tex]\( a \)[/tex]:
- If [tex]\( a > 0 \)[/tex], the parabola opens upwards, having a minimum at the vertex.
- If [tex]\( a < 0 \)[/tex], the parabola opens downwards, having a maximum at the vertex.
- Therefore, the statement is true if [tex]\( a > 0 \)[/tex], but since there's no restriction on [tex]\( a \)[/tex] always being greater than zero, it is more accurate to say it sometimes has a minimum.
3. The [tex]\( y \)[/tex]-intercept will always be the vertex.
- The [tex]\( y \)[/tex]-intercept is the point where [tex]\( x = 0 \)[/tex], which gives [tex]\( f(0) = c \)[/tex].
- The vertex of the parabola [tex]\( ax^2 + c \)[/tex] when [tex]\( b = 0 \)[/tex] is at [tex]\( (0, c) \)[/tex].
- Therefore, the [tex]\( y \)[/tex]-intercept (0, c) is indeed the vertex.
- The statement is true.
4. The axis of symmetry will always be positive.
- The axis of symmetry for a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex] is given by [tex]\( x = -\frac{b}{2a} \)[/tex].
- When [tex]\( b = 0 \)[/tex], this reduces to [tex]\( x = 0 \)[/tex].
- [tex]\( x = 0 \)[/tex] is neither positive nor negative, so the statement is false.
In summary, the true statements are:
- The [tex]\( y \)[/tex]-intercept will always be the vertex.
- The function will always have a minimum.
Thus, the correct choices are:
- The function will always have a minimum.
- The [tex]\( y \)[/tex]-intercept will always be the vertex.
Therefore, the answer is:
[tex]\[ (2, 3) \][/tex]
1. The graph will always have zero [tex]\( x \)[/tex]-intercepts.
- The [tex]\( x \)[/tex]-intercepts occur where the function [tex]\( f(x) = ax^2 + c \)[/tex] equals 0, i.e., [tex]\( ax^2 + c = 0 \)[/tex].
- Solving for [tex]\( x \)[/tex], we get [tex]\( x^2 = -\frac{c}{a} \)[/tex].
- The number of solutions depends on the values of [tex]\( a \)[/tex] and [tex]\( c \)[/tex]:
- If [tex]\( c = 0 \)[/tex], there is one solution: [tex]\( x = 0 \)[/tex].
- If [tex]\( a \)[/tex] and [tex]\( c \)[/tex] are both non-zero and have opposite signs (one positive and one negative), there are two real solutions.
- If [tex]\( a \)[/tex] and [tex]\( c \)[/tex] have the same signs (both positive or both negative), there are no real solutions.
- Therefore, the statement is false because the graph can have zero, one, or two [tex]\( x \)[/tex]-intercepts.
2. The function will always have a minimum.
- For [tex]\( f(x) = ax^2 + c \)[/tex], the direction the parabola opens depends on the sign of [tex]\( a \)[/tex]:
- If [tex]\( a > 0 \)[/tex], the parabola opens upwards, having a minimum at the vertex.
- If [tex]\( a < 0 \)[/tex], the parabola opens downwards, having a maximum at the vertex.
- Therefore, the statement is true if [tex]\( a > 0 \)[/tex], but since there's no restriction on [tex]\( a \)[/tex] always being greater than zero, it is more accurate to say it sometimes has a minimum.
3. The [tex]\( y \)[/tex]-intercept will always be the vertex.
- The [tex]\( y \)[/tex]-intercept is the point where [tex]\( x = 0 \)[/tex], which gives [tex]\( f(0) = c \)[/tex].
- The vertex of the parabola [tex]\( ax^2 + c \)[/tex] when [tex]\( b = 0 \)[/tex] is at [tex]\( (0, c) \)[/tex].
- Therefore, the [tex]\( y \)[/tex]-intercept (0, c) is indeed the vertex.
- The statement is true.
4. The axis of symmetry will always be positive.
- The axis of symmetry for a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex] is given by [tex]\( x = -\frac{b}{2a} \)[/tex].
- When [tex]\( b = 0 \)[/tex], this reduces to [tex]\( x = 0 \)[/tex].
- [tex]\( x = 0 \)[/tex] is neither positive nor negative, so the statement is false.
In summary, the true statements are:
- The [tex]\( y \)[/tex]-intercept will always be the vertex.
- The function will always have a minimum.
Thus, the correct choices are:
- The function will always have a minimum.
- The [tex]\( y \)[/tex]-intercept will always be the vertex.
Therefore, the answer is:
[tex]\[ (2, 3) \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.