Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Alright, let’s solve the problem step-by-step.
### Given:
- The voltage equation: [tex]\( e = 140 \sin 3142t \)[/tex]
- A pure resistor [tex]\( R = 50 \, \Omega \)[/tex]
### Part (i): Finding the frequency of the source
We start with the given equation for the voltage:
[tex]\[ e = 140 \sin 3142t \][/tex]
The general form of an alternating voltage is given by:
[tex]\[ e = E_{\text{max}} \sin(2 \pi f t) \][/tex]
In this form, [tex]\( E_{\text{max}} \)[/tex] is the maximum voltage, and [tex]\( 2 \pi f \)[/tex] is the angular frequency.
We compare the given equation [tex]\( e = 140 \sin 3142t \)[/tex] to the general form [tex]\( e = E_{\text{max}} \sin(2 \pi f t) \)[/tex]:
- [tex]\( 2 \pi f \)[/tex] corresponds to [tex]\( 3142 \)[/tex]
From this, we can solve for [tex]\( f \)[/tex] (the frequency):
[tex]\[ 2 \pi f = 3142 \][/tex]
[tex]\[ f = \frac{3142}{2 \pi} \][/tex]
Using the numerical result we have:
[tex]\[ f \approx 500.0648311947352 \, \text{Hz} \][/tex]
So, the frequency of the source is approximately [tex]\( 500.065 \, \text{Hz} \)[/tex].
### Part (ii): Finding the RMS current through the resistor
First, we need to find the RMS (Root Mean Square) value of the voltage. For a sinusoidal voltage, the RMS value is given by:
[tex]\[ E_{\text{rms}} = \frac{E_{\text{max}}}{\sqrt{2}} \][/tex]
Given:
- [tex]\( E_{\text{max}} = 140 \, \text{V} \)[/tex]
We calculate [tex]\( E_{\text{rms}} \)[/tex]:
[tex]\[ E_{\text{rms}} = \frac{140}{\sqrt{2}} \][/tex]
Using the numerical result we have:
[tex]\[ E_{\text{rms}} \approx 98.99494936611664 \, \text{V} \][/tex]
Next, we need to find the RMS current through the resistor. Ohm's law states:
[tex]\[ I_{\text{rms}} = \frac{E_{\text{rms}}}{R} \][/tex]
Given:
- [tex]\( E_{\text{rms}} \approx 98.99494936611664 \, \text{V} \)[/tex]
- [tex]\( R = 50 \, \Omega \)[/tex]
We calculate [tex]\( I_{\text{rms}} \)[/tex]:
[tex]\[ I_{\text{rms}} = \frac{98.99494936611664}{50} \][/tex]
Using the numerical result we have:
[tex]\[ I_{\text{rms}} \approx 1.979898987322333 \, \text{A} \][/tex]
So, the RMS current through the resistor is approximately [tex]\( 1.98 \, \text{A} \)[/tex].
### Summary
(i) The frequency of the source is approximately [tex]\( 500.065 \, \text{Hz} \)[/tex].
(ii) The RMS current through the resistor is approximately [tex]\( 1.98 \, \text{A} \)[/tex].
### Given:
- The voltage equation: [tex]\( e = 140 \sin 3142t \)[/tex]
- A pure resistor [tex]\( R = 50 \, \Omega \)[/tex]
### Part (i): Finding the frequency of the source
We start with the given equation for the voltage:
[tex]\[ e = 140 \sin 3142t \][/tex]
The general form of an alternating voltage is given by:
[tex]\[ e = E_{\text{max}} \sin(2 \pi f t) \][/tex]
In this form, [tex]\( E_{\text{max}} \)[/tex] is the maximum voltage, and [tex]\( 2 \pi f \)[/tex] is the angular frequency.
We compare the given equation [tex]\( e = 140 \sin 3142t \)[/tex] to the general form [tex]\( e = E_{\text{max}} \sin(2 \pi f t) \)[/tex]:
- [tex]\( 2 \pi f \)[/tex] corresponds to [tex]\( 3142 \)[/tex]
From this, we can solve for [tex]\( f \)[/tex] (the frequency):
[tex]\[ 2 \pi f = 3142 \][/tex]
[tex]\[ f = \frac{3142}{2 \pi} \][/tex]
Using the numerical result we have:
[tex]\[ f \approx 500.0648311947352 \, \text{Hz} \][/tex]
So, the frequency of the source is approximately [tex]\( 500.065 \, \text{Hz} \)[/tex].
### Part (ii): Finding the RMS current through the resistor
First, we need to find the RMS (Root Mean Square) value of the voltage. For a sinusoidal voltage, the RMS value is given by:
[tex]\[ E_{\text{rms}} = \frac{E_{\text{max}}}{\sqrt{2}} \][/tex]
Given:
- [tex]\( E_{\text{max}} = 140 \, \text{V} \)[/tex]
We calculate [tex]\( E_{\text{rms}} \)[/tex]:
[tex]\[ E_{\text{rms}} = \frac{140}{\sqrt{2}} \][/tex]
Using the numerical result we have:
[tex]\[ E_{\text{rms}} \approx 98.99494936611664 \, \text{V} \][/tex]
Next, we need to find the RMS current through the resistor. Ohm's law states:
[tex]\[ I_{\text{rms}} = \frac{E_{\text{rms}}}{R} \][/tex]
Given:
- [tex]\( E_{\text{rms}} \approx 98.99494936611664 \, \text{V} \)[/tex]
- [tex]\( R = 50 \, \Omega \)[/tex]
We calculate [tex]\( I_{\text{rms}} \)[/tex]:
[tex]\[ I_{\text{rms}} = \frac{98.99494936611664}{50} \][/tex]
Using the numerical result we have:
[tex]\[ I_{\text{rms}} \approx 1.979898987322333 \, \text{A} \][/tex]
So, the RMS current through the resistor is approximately [tex]\( 1.98 \, \text{A} \)[/tex].
### Summary
(i) The frequency of the source is approximately [tex]\( 500.065 \, \text{Hz} \)[/tex].
(ii) The RMS current through the resistor is approximately [tex]\( 1.98 \, \text{A} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.