Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Alright, let’s solve the problem step-by-step.
### Given:
- The voltage equation: [tex]\( e = 140 \sin 3142t \)[/tex]
- A pure resistor [tex]\( R = 50 \, \Omega \)[/tex]
### Part (i): Finding the frequency of the source
We start with the given equation for the voltage:
[tex]\[ e = 140 \sin 3142t \][/tex]
The general form of an alternating voltage is given by:
[tex]\[ e = E_{\text{max}} \sin(2 \pi f t) \][/tex]
In this form, [tex]\( E_{\text{max}} \)[/tex] is the maximum voltage, and [tex]\( 2 \pi f \)[/tex] is the angular frequency.
We compare the given equation [tex]\( e = 140 \sin 3142t \)[/tex] to the general form [tex]\( e = E_{\text{max}} \sin(2 \pi f t) \)[/tex]:
- [tex]\( 2 \pi f \)[/tex] corresponds to [tex]\( 3142 \)[/tex]
From this, we can solve for [tex]\( f \)[/tex] (the frequency):
[tex]\[ 2 \pi f = 3142 \][/tex]
[tex]\[ f = \frac{3142}{2 \pi} \][/tex]
Using the numerical result we have:
[tex]\[ f \approx 500.0648311947352 \, \text{Hz} \][/tex]
So, the frequency of the source is approximately [tex]\( 500.065 \, \text{Hz} \)[/tex].
### Part (ii): Finding the RMS current through the resistor
First, we need to find the RMS (Root Mean Square) value of the voltage. For a sinusoidal voltage, the RMS value is given by:
[tex]\[ E_{\text{rms}} = \frac{E_{\text{max}}}{\sqrt{2}} \][/tex]
Given:
- [tex]\( E_{\text{max}} = 140 \, \text{V} \)[/tex]
We calculate [tex]\( E_{\text{rms}} \)[/tex]:
[tex]\[ E_{\text{rms}} = \frac{140}{\sqrt{2}} \][/tex]
Using the numerical result we have:
[tex]\[ E_{\text{rms}} \approx 98.99494936611664 \, \text{V} \][/tex]
Next, we need to find the RMS current through the resistor. Ohm's law states:
[tex]\[ I_{\text{rms}} = \frac{E_{\text{rms}}}{R} \][/tex]
Given:
- [tex]\( E_{\text{rms}} \approx 98.99494936611664 \, \text{V} \)[/tex]
- [tex]\( R = 50 \, \Omega \)[/tex]
We calculate [tex]\( I_{\text{rms}} \)[/tex]:
[tex]\[ I_{\text{rms}} = \frac{98.99494936611664}{50} \][/tex]
Using the numerical result we have:
[tex]\[ I_{\text{rms}} \approx 1.979898987322333 \, \text{A} \][/tex]
So, the RMS current through the resistor is approximately [tex]\( 1.98 \, \text{A} \)[/tex].
### Summary
(i) The frequency of the source is approximately [tex]\( 500.065 \, \text{Hz} \)[/tex].
(ii) The RMS current through the resistor is approximately [tex]\( 1.98 \, \text{A} \)[/tex].
### Given:
- The voltage equation: [tex]\( e = 140 \sin 3142t \)[/tex]
- A pure resistor [tex]\( R = 50 \, \Omega \)[/tex]
### Part (i): Finding the frequency of the source
We start with the given equation for the voltage:
[tex]\[ e = 140 \sin 3142t \][/tex]
The general form of an alternating voltage is given by:
[tex]\[ e = E_{\text{max}} \sin(2 \pi f t) \][/tex]
In this form, [tex]\( E_{\text{max}} \)[/tex] is the maximum voltage, and [tex]\( 2 \pi f \)[/tex] is the angular frequency.
We compare the given equation [tex]\( e = 140 \sin 3142t \)[/tex] to the general form [tex]\( e = E_{\text{max}} \sin(2 \pi f t) \)[/tex]:
- [tex]\( 2 \pi f \)[/tex] corresponds to [tex]\( 3142 \)[/tex]
From this, we can solve for [tex]\( f \)[/tex] (the frequency):
[tex]\[ 2 \pi f = 3142 \][/tex]
[tex]\[ f = \frac{3142}{2 \pi} \][/tex]
Using the numerical result we have:
[tex]\[ f \approx 500.0648311947352 \, \text{Hz} \][/tex]
So, the frequency of the source is approximately [tex]\( 500.065 \, \text{Hz} \)[/tex].
### Part (ii): Finding the RMS current through the resistor
First, we need to find the RMS (Root Mean Square) value of the voltage. For a sinusoidal voltage, the RMS value is given by:
[tex]\[ E_{\text{rms}} = \frac{E_{\text{max}}}{\sqrt{2}} \][/tex]
Given:
- [tex]\( E_{\text{max}} = 140 \, \text{V} \)[/tex]
We calculate [tex]\( E_{\text{rms}} \)[/tex]:
[tex]\[ E_{\text{rms}} = \frac{140}{\sqrt{2}} \][/tex]
Using the numerical result we have:
[tex]\[ E_{\text{rms}} \approx 98.99494936611664 \, \text{V} \][/tex]
Next, we need to find the RMS current through the resistor. Ohm's law states:
[tex]\[ I_{\text{rms}} = \frac{E_{\text{rms}}}{R} \][/tex]
Given:
- [tex]\( E_{\text{rms}} \approx 98.99494936611664 \, \text{V} \)[/tex]
- [tex]\( R = 50 \, \Omega \)[/tex]
We calculate [tex]\( I_{\text{rms}} \)[/tex]:
[tex]\[ I_{\text{rms}} = \frac{98.99494936611664}{50} \][/tex]
Using the numerical result we have:
[tex]\[ I_{\text{rms}} \approx 1.979898987322333 \, \text{A} \][/tex]
So, the RMS current through the resistor is approximately [tex]\( 1.98 \, \text{A} \)[/tex].
### Summary
(i) The frequency of the source is approximately [tex]\( 500.065 \, \text{Hz} \)[/tex].
(ii) The RMS current through the resistor is approximately [tex]\( 1.98 \, \text{A} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.