Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Alright, let’s solve the problem step-by-step.
### Given:
- The voltage equation: [tex]\( e = 140 \sin 3142t \)[/tex]
- A pure resistor [tex]\( R = 50 \, \Omega \)[/tex]
### Part (i): Finding the frequency of the source
We start with the given equation for the voltage:
[tex]\[ e = 140 \sin 3142t \][/tex]
The general form of an alternating voltage is given by:
[tex]\[ e = E_{\text{max}} \sin(2 \pi f t) \][/tex]
In this form, [tex]\( E_{\text{max}} \)[/tex] is the maximum voltage, and [tex]\( 2 \pi f \)[/tex] is the angular frequency.
We compare the given equation [tex]\( e = 140 \sin 3142t \)[/tex] to the general form [tex]\( e = E_{\text{max}} \sin(2 \pi f t) \)[/tex]:
- [tex]\( 2 \pi f \)[/tex] corresponds to [tex]\( 3142 \)[/tex]
From this, we can solve for [tex]\( f \)[/tex] (the frequency):
[tex]\[ 2 \pi f = 3142 \][/tex]
[tex]\[ f = \frac{3142}{2 \pi} \][/tex]
Using the numerical result we have:
[tex]\[ f \approx 500.0648311947352 \, \text{Hz} \][/tex]
So, the frequency of the source is approximately [tex]\( 500.065 \, \text{Hz} \)[/tex].
### Part (ii): Finding the RMS current through the resistor
First, we need to find the RMS (Root Mean Square) value of the voltage. For a sinusoidal voltage, the RMS value is given by:
[tex]\[ E_{\text{rms}} = \frac{E_{\text{max}}}{\sqrt{2}} \][/tex]
Given:
- [tex]\( E_{\text{max}} = 140 \, \text{V} \)[/tex]
We calculate [tex]\( E_{\text{rms}} \)[/tex]:
[tex]\[ E_{\text{rms}} = \frac{140}{\sqrt{2}} \][/tex]
Using the numerical result we have:
[tex]\[ E_{\text{rms}} \approx 98.99494936611664 \, \text{V} \][/tex]
Next, we need to find the RMS current through the resistor. Ohm's law states:
[tex]\[ I_{\text{rms}} = \frac{E_{\text{rms}}}{R} \][/tex]
Given:
- [tex]\( E_{\text{rms}} \approx 98.99494936611664 \, \text{V} \)[/tex]
- [tex]\( R = 50 \, \Omega \)[/tex]
We calculate [tex]\( I_{\text{rms}} \)[/tex]:
[tex]\[ I_{\text{rms}} = \frac{98.99494936611664}{50} \][/tex]
Using the numerical result we have:
[tex]\[ I_{\text{rms}} \approx 1.979898987322333 \, \text{A} \][/tex]
So, the RMS current through the resistor is approximately [tex]\( 1.98 \, \text{A} \)[/tex].
### Summary
(i) The frequency of the source is approximately [tex]\( 500.065 \, \text{Hz} \)[/tex].
(ii) The RMS current through the resistor is approximately [tex]\( 1.98 \, \text{A} \)[/tex].
### Given:
- The voltage equation: [tex]\( e = 140 \sin 3142t \)[/tex]
- A pure resistor [tex]\( R = 50 \, \Omega \)[/tex]
### Part (i): Finding the frequency of the source
We start with the given equation for the voltage:
[tex]\[ e = 140 \sin 3142t \][/tex]
The general form of an alternating voltage is given by:
[tex]\[ e = E_{\text{max}} \sin(2 \pi f t) \][/tex]
In this form, [tex]\( E_{\text{max}} \)[/tex] is the maximum voltage, and [tex]\( 2 \pi f \)[/tex] is the angular frequency.
We compare the given equation [tex]\( e = 140 \sin 3142t \)[/tex] to the general form [tex]\( e = E_{\text{max}} \sin(2 \pi f t) \)[/tex]:
- [tex]\( 2 \pi f \)[/tex] corresponds to [tex]\( 3142 \)[/tex]
From this, we can solve for [tex]\( f \)[/tex] (the frequency):
[tex]\[ 2 \pi f = 3142 \][/tex]
[tex]\[ f = \frac{3142}{2 \pi} \][/tex]
Using the numerical result we have:
[tex]\[ f \approx 500.0648311947352 \, \text{Hz} \][/tex]
So, the frequency of the source is approximately [tex]\( 500.065 \, \text{Hz} \)[/tex].
### Part (ii): Finding the RMS current through the resistor
First, we need to find the RMS (Root Mean Square) value of the voltage. For a sinusoidal voltage, the RMS value is given by:
[tex]\[ E_{\text{rms}} = \frac{E_{\text{max}}}{\sqrt{2}} \][/tex]
Given:
- [tex]\( E_{\text{max}} = 140 \, \text{V} \)[/tex]
We calculate [tex]\( E_{\text{rms}} \)[/tex]:
[tex]\[ E_{\text{rms}} = \frac{140}{\sqrt{2}} \][/tex]
Using the numerical result we have:
[tex]\[ E_{\text{rms}} \approx 98.99494936611664 \, \text{V} \][/tex]
Next, we need to find the RMS current through the resistor. Ohm's law states:
[tex]\[ I_{\text{rms}} = \frac{E_{\text{rms}}}{R} \][/tex]
Given:
- [tex]\( E_{\text{rms}} \approx 98.99494936611664 \, \text{V} \)[/tex]
- [tex]\( R = 50 \, \Omega \)[/tex]
We calculate [tex]\( I_{\text{rms}} \)[/tex]:
[tex]\[ I_{\text{rms}} = \frac{98.99494936611664}{50} \][/tex]
Using the numerical result we have:
[tex]\[ I_{\text{rms}} \approx 1.979898987322333 \, \text{A} \][/tex]
So, the RMS current through the resistor is approximately [tex]\( 1.98 \, \text{A} \)[/tex].
### Summary
(i) The frequency of the source is approximately [tex]\( 500.065 \, \text{Hz} \)[/tex].
(ii) The RMS current through the resistor is approximately [tex]\( 1.98 \, \text{A} \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.