Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the range of [tex]\((u \circ v)(x)\)[/tex], we need to understand what [tex]\((u \circ v)(x)\)[/tex] means in this context. The notation [tex]\((u \circ v)(x)\)[/tex] signifies the composition of the function [tex]\(u\)[/tex] with the function [tex]\(v\)[/tex]. This means we first apply [tex]\(v(x)\)[/tex] and then apply [tex]\(u\)[/tex] to the result of [tex]\(v(x)\)[/tex]. Mathematically, this is expressed as [tex]\(u(v(x))\)[/tex].
Given the functions:
[tex]\[ u(x) = -2x^2 + 3 \][/tex]
[tex]\[ v(x) = \frac{1}{x} \][/tex]
We need to find [tex]\(u(v(x))\)[/tex].
Firstly, substitute [tex]\(v(x)\)[/tex] into the function [tex]\(u(x)\)[/tex]:
[tex]\[ u(v(x)) = u\left(\frac{1}{x}\right) \][/tex]
Now we substitute [tex]\(\frac{1}{x}\)[/tex] into [tex]\(u(x)\)[/tex]:
[tex]\[ u\left(\frac{1}{x}\right) = -2\left(\frac{1}{x}\right)^2 + 3 \][/tex]
Simplify [tex]\(\left(\frac{1}{x}\right)^2\)[/tex]:
[tex]\[ u\left(\frac{1}{x}\right) = -2 \cdot \frac{1}{x^2} + 3 \][/tex]
[tex]\[ u\left(\frac{1}{x}\right) = -\frac{2}{x^2} + 3 \][/tex]
Next, we analyze the expression [tex]\(-\frac{2}{x^2} + 3\)[/tex] to determine its range. The term [tex]\(-\frac{2}{x^2}\)[/tex] is always non-positive because [tex]\(x^2\)[/tex] is always positive for all [tex]\(x \neq 0\)[/tex]. As [tex]\(x\)[/tex] approaches [tex]\(\pm \infty\)[/tex], [tex]\(-\frac{2}{x^2}\)[/tex] approaches 0.
This means that:
[tex]\[ -\frac{2}{x^2} \leq 0 \][/tex]
Thus,
[tex]\[ -\frac{2}{x^2} + 3 \leq 3 \][/tex]
The maximum value of the expression is 3, which occurs as [tex]\(x\)[/tex] approaches [tex]\(\pm \infty\)[/tex]. Since [tex]\(-\frac{2}{x^2}\)[/tex] can be any negative value, [tex]\(-\frac{2}{x^2} + 3\)[/tex] can take on any value less than or equal to 3.
Therefore, the expression [tex]\(-\frac{2}{x^2} + 3\)[/tex] can cover all values from [tex]\(-\infty\)[/tex] to 3.
So, the range of [tex]\((u \circ v)(x)\)[/tex] is:
[tex]\[ (-\infty, 3) \][/tex]
Given the functions:
[tex]\[ u(x) = -2x^2 + 3 \][/tex]
[tex]\[ v(x) = \frac{1}{x} \][/tex]
We need to find [tex]\(u(v(x))\)[/tex].
Firstly, substitute [tex]\(v(x)\)[/tex] into the function [tex]\(u(x)\)[/tex]:
[tex]\[ u(v(x)) = u\left(\frac{1}{x}\right) \][/tex]
Now we substitute [tex]\(\frac{1}{x}\)[/tex] into [tex]\(u(x)\)[/tex]:
[tex]\[ u\left(\frac{1}{x}\right) = -2\left(\frac{1}{x}\right)^2 + 3 \][/tex]
Simplify [tex]\(\left(\frac{1}{x}\right)^2\)[/tex]:
[tex]\[ u\left(\frac{1}{x}\right) = -2 \cdot \frac{1}{x^2} + 3 \][/tex]
[tex]\[ u\left(\frac{1}{x}\right) = -\frac{2}{x^2} + 3 \][/tex]
Next, we analyze the expression [tex]\(-\frac{2}{x^2} + 3\)[/tex] to determine its range. The term [tex]\(-\frac{2}{x^2}\)[/tex] is always non-positive because [tex]\(x^2\)[/tex] is always positive for all [tex]\(x \neq 0\)[/tex]. As [tex]\(x\)[/tex] approaches [tex]\(\pm \infty\)[/tex], [tex]\(-\frac{2}{x^2}\)[/tex] approaches 0.
This means that:
[tex]\[ -\frac{2}{x^2} \leq 0 \][/tex]
Thus,
[tex]\[ -\frac{2}{x^2} + 3 \leq 3 \][/tex]
The maximum value of the expression is 3, which occurs as [tex]\(x\)[/tex] approaches [tex]\(\pm \infty\)[/tex]. Since [tex]\(-\frac{2}{x^2}\)[/tex] can be any negative value, [tex]\(-\frac{2}{x^2} + 3\)[/tex] can take on any value less than or equal to 3.
Therefore, the expression [tex]\(-\frac{2}{x^2} + 3\)[/tex] can cover all values from [tex]\(-\infty\)[/tex] to 3.
So, the range of [tex]\((u \circ v)(x)\)[/tex] is:
[tex]\[ (-\infty, 3) \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.