Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To calculate the arithmetic mean of the given distribution, we'll follow these steps:
1. Find the midpoints of each profit interval: The midpoint of an interval is the average of its lower and upper bounds. For each interval, we calculate:
- [tex]\(0-10\)[/tex]: Midpoint [tex]\((0 + 10) / 2 = 5\)[/tex]
- [tex]\(10-20\)[/tex]: Midpoint [tex]\((10 + 20) / 2 = 15\)[/tex]
- [tex]\(20-30\)[/tex]: Midpoint [tex]\((20 + 30) / 2 = 25\)[/tex]
- [tex]\(30-40\)[/tex]: Midpoint [tex]\((30 + 40) / 2 = 35\)[/tex]
- [tex]\(40-50\)[/tex]: Midpoint [tex]\((40 + 50) / 2 = 45\)[/tex]
- [tex]\(50-60\)[/tex]: Midpoint [tex]\((50 + 60) / 2 = 55\)[/tex]
So, the midpoints are [tex]\([5, 15, 25, 35, 45, 55]\)[/tex].
2. Determine the total number of stalls: Add the number of stalls in each profit interval:
[tex]\[ \text{Total number of stalls} = 126 + 18 + 27 + 20 + 17 + 6 = 214 \][/tex]
3. Calculate the weighted sum of the midpoints: Multiply each midpoint by the corresponding number of stalls, then sum these products:
[tex]\[ \begin{align*} \text{Weighted sum} &= (5 \times 126) + (15 \times 18) + (25 \times 27) + (35 \times 20) + (45 \times 17) + (55 \times 6) \\ &= 630 + 270 + 675 + 700 + 765 + 330 \\ &= 3370 \end{align*} \][/tex]
4. Calculate the arithmetic mean: The arithmetic mean is the weighted sum of the midpoints divided by the total number of stalls:
[tex]\[ \text{Arithmetic mean} = \frac{\text{Weighted sum}}{\text{Total number of stalls}} = \frac{3370}{214} \approx 15.748 \][/tex]
Hence, the arithmetic mean of the distribution is approximately [tex]\(15.748\)[/tex].
1. Find the midpoints of each profit interval: The midpoint of an interval is the average of its lower and upper bounds. For each interval, we calculate:
- [tex]\(0-10\)[/tex]: Midpoint [tex]\((0 + 10) / 2 = 5\)[/tex]
- [tex]\(10-20\)[/tex]: Midpoint [tex]\((10 + 20) / 2 = 15\)[/tex]
- [tex]\(20-30\)[/tex]: Midpoint [tex]\((20 + 30) / 2 = 25\)[/tex]
- [tex]\(30-40\)[/tex]: Midpoint [tex]\((30 + 40) / 2 = 35\)[/tex]
- [tex]\(40-50\)[/tex]: Midpoint [tex]\((40 + 50) / 2 = 45\)[/tex]
- [tex]\(50-60\)[/tex]: Midpoint [tex]\((50 + 60) / 2 = 55\)[/tex]
So, the midpoints are [tex]\([5, 15, 25, 35, 45, 55]\)[/tex].
2. Determine the total number of stalls: Add the number of stalls in each profit interval:
[tex]\[ \text{Total number of stalls} = 126 + 18 + 27 + 20 + 17 + 6 = 214 \][/tex]
3. Calculate the weighted sum of the midpoints: Multiply each midpoint by the corresponding number of stalls, then sum these products:
[tex]\[ \begin{align*} \text{Weighted sum} &= (5 \times 126) + (15 \times 18) + (25 \times 27) + (35 \times 20) + (45 \times 17) + (55 \times 6) \\ &= 630 + 270 + 675 + 700 + 765 + 330 \\ &= 3370 \end{align*} \][/tex]
4. Calculate the arithmetic mean: The arithmetic mean is the weighted sum of the midpoints divided by the total number of stalls:
[tex]\[ \text{Arithmetic mean} = \frac{\text{Weighted sum}}{\text{Total number of stalls}} = \frac{3370}{214} \approx 15.748 \][/tex]
Hence, the arithmetic mean of the distribution is approximately [tex]\(15.748\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.