At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the recursive formula for the given sequence [tex]\(12, 16, 20, 24, 28, \ldots\)[/tex], let's break down the problem step-by-step:
1. Identify the First Term:
The first term of the sequence is given as [tex]\(a_1 = 12\)[/tex].
2. Determine the Common Difference:
To find the common difference ([tex]\(d\)[/tex]), we need to subtract the first term from the second term.
[tex]\[ d = a_2 - a_1 = 16 - 12 = 4 \][/tex]
This indicates that 4 is added to each term to get the next term in the sequence.
3. Formulate the Recursive Formula:
The recursive formula for an arithmetic sequence takes the form:
[tex]\[ a_n = a_{n-1} + d \][/tex]
Given that the first term [tex]\(a_1 = 12\)[/tex] and the common difference [tex]\(d = 4\)[/tex], we can write the recursive formula as follows:
[tex]\[ \left\{\begin{array}{l} a_1 = 12 \\ a_n = a_{n-1} + 4 \end{array}\right. \][/tex]
4. Match with Given Options:
Compare the derived formula with the provided options:
- A. [tex]\( \left\{\begin{array}{l}a_1=4 \\ a_n=a_{n-1}+12\end{array}\right. \)[/tex]: This option has an incorrect first term and common difference.
- B. [tex]\( \left\{\begin{array}{l}a_1=12 \\ a_n=a_{n-1}+4\end{array}\right. \)[/tex]: This matches exactly with our derived formula.
- C. [tex]\( \left\{\begin{array}{l}a_1=32 \\ a_n=a_{n-1}+4\end{array}\right. \)[/tex]: This option has an incorrect first term.
- D. [tex]\( \left\{\begin{array}{l}a_1=12 \\ a_n=a_{n-1}-4\end{array}\right. \)[/tex]: This option has an incorrect common difference.
Hence, the correct recursive formula for the sequence is:
[tex]\[ \text{B.} \left\{\begin{array}{l}a_1=12 \\ a_n=a_{n-1}+4\end{array}\right. \][/tex]
1. Identify the First Term:
The first term of the sequence is given as [tex]\(a_1 = 12\)[/tex].
2. Determine the Common Difference:
To find the common difference ([tex]\(d\)[/tex]), we need to subtract the first term from the second term.
[tex]\[ d = a_2 - a_1 = 16 - 12 = 4 \][/tex]
This indicates that 4 is added to each term to get the next term in the sequence.
3. Formulate the Recursive Formula:
The recursive formula for an arithmetic sequence takes the form:
[tex]\[ a_n = a_{n-1} + d \][/tex]
Given that the first term [tex]\(a_1 = 12\)[/tex] and the common difference [tex]\(d = 4\)[/tex], we can write the recursive formula as follows:
[tex]\[ \left\{\begin{array}{l} a_1 = 12 \\ a_n = a_{n-1} + 4 \end{array}\right. \][/tex]
4. Match with Given Options:
Compare the derived formula with the provided options:
- A. [tex]\( \left\{\begin{array}{l}a_1=4 \\ a_n=a_{n-1}+12\end{array}\right. \)[/tex]: This option has an incorrect first term and common difference.
- B. [tex]\( \left\{\begin{array}{l}a_1=12 \\ a_n=a_{n-1}+4\end{array}\right. \)[/tex]: This matches exactly with our derived formula.
- C. [tex]\( \left\{\begin{array}{l}a_1=32 \\ a_n=a_{n-1}+4\end{array}\right. \)[/tex]: This option has an incorrect first term.
- D. [tex]\( \left\{\begin{array}{l}a_1=12 \\ a_n=a_{n-1}-4\end{array}\right. \)[/tex]: This option has an incorrect common difference.
Hence, the correct recursive formula for the sequence is:
[tex]\[ \text{B.} \left\{\begin{array}{l}a_1=12 \\ a_n=a_{n-1}+4\end{array}\right. \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.